Metamath Proof Explorer


Theorem 2eluzge1

Description: 2 is an integer greater than or equal to 1. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion 2eluzge1 2 ∈ ( ℤ ‘ 1 )

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 2z 2 ∈ ℤ
3 1le2 1 ≤ 2
4 eluz2 ( 2 ∈ ( ℤ ‘ 1 ) ↔ ( 1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≤ 2 ) )
5 1 2 3 4 mpbir3an 2 ∈ ( ℤ ‘ 1 )