Metamath Proof Explorer


Theorem 2eu2ex

Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001)

Ref Expression
Assertion 2eu2ex ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃ 𝑥𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 euex ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃ 𝑥 ∃! 𝑦 𝜑 )
2 euex ( ∃! 𝑦 𝜑 → ∃ 𝑦 𝜑 )
3 2 eximi ( ∃ 𝑥 ∃! 𝑦 𝜑 → ∃ 𝑥𝑦 𝜑 )
4 1 3 syl ( ∃! 𝑥 ∃! 𝑦 𝜑 → ∃ 𝑥𝑦 𝜑 )