| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2eu4 | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑  ∧  ∃! 𝑦 ∃ 𝑥 𝜑 )  ↔  ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 2 |  | nfia1 | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 3 |  | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  =  𝑧 | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑥  =  𝑧 ) | 
						
							| 6 | 5 | imim2i | ⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑥  =  𝑧 ) ) | 
						
							| 7 | 6 | sps | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑥  =  𝑧 ) ) | 
						
							| 8 | 3 4 7 | exlimd | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  𝑥  =  𝑧 ) ) | 
						
							| 9 |  | ax12v | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) ) | 
						
							| 10 | 8 9 | syli | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) ) | 
						
							| 11 | 10 | com12 | ⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) ) | 
						
							| 12 | 11 | spsd | ⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 ) ) ) | 
						
							| 13 |  | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 14 |  | simpr | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑦  =  𝑤 ) | 
						
							| 15 | 14 | imim2i | ⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  𝑦  =  𝑤 ) ) | 
						
							| 16 |  | sbequ1 | ⊢ ( 𝑦  =  𝑤  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 17 | 15 16 | syli | ⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 18 | 17 | sps | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 19 | 3 13 18 | exlimd | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑦 𝜑  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 20 | 19 | imim2d | ⊢ ( ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 21 | 20 | al2imi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) ) | 
						
							| 22 |  | sb6 | ⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 ) ) | 
						
							| 23 |  | 2sb6 | ⊢ ( [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 24 | 22 23 | bitr3i | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑧  →  [ 𝑤  /  𝑦 ] 𝜑 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 25 | 21 24 | imbitrdi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑧  →  ∃ 𝑦 𝜑 )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) ) | 
						
							| 26 | 12 25 | sylcom | ⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) ) | 
						
							| 27 | 26 | ancld | ⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) ) ) | 
						
							| 28 |  | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) ) | 
						
							| 29 | 27 28 | imbitrrdi | ⊢ ( ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 30 | 2 29 | exlimi | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 31 | 30 | 2eximdv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  →  ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 33 |  | biimpr | ⊢ ( ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 34 | 33 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 35 | 34 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 36 |  | 2exsb | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝜑 ) ) | 
						
							| 37 | 35 36 | sylibr | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑥 ∃ 𝑦 𝜑 ) | 
						
							| 38 |  | biimp | ⊢ ( ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 39 | 38 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 40 | 39 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 41 | 37 40 | jca | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 42 | 32 41 | impbii | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 43 | 1 42 | bitri | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑  ∧  ∃! 𝑦 ∃ 𝑥 𝜑 )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑  ↔  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) |