| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2eu4 |
⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 2 |
|
nfia1 |
⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 3 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑧 |
| 5 |
|
simpl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) |
| 6 |
5
|
imim2i |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 7 |
6
|
sps |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 8 |
3 4 7
|
exlimd |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
| 9 |
|
ax12v |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 10 |
8 9
|
syli |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 11 |
10
|
com12 |
⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 12 |
11
|
spsd |
⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 13 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 |
| 14 |
|
simpr |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) |
| 15 |
14
|
imim2i |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑦 = 𝑤 ) ) |
| 16 |
|
sbequ1 |
⊢ ( 𝑦 = 𝑤 → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 17 |
15 16
|
syli |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 18 |
17
|
sps |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 19 |
3 13 18
|
exlimd |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 20 |
19
|
imim2d |
⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 21 |
20
|
al2imi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 22 |
|
sb6 |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 23 |
|
2sb6 |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 24 |
22 23
|
bitr3i |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 25 |
21 24
|
imbitrdi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) |
| 26 |
12 25
|
sylcom |
⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) |
| 27 |
26
|
ancld |
⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) ) |
| 28 |
|
2albiim |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) |
| 29 |
27 28
|
imbitrrdi |
⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 30 |
2 29
|
exlimi |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 31 |
30
|
2eximdv |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 33 |
|
biimpr |
⊢ ( ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 34 |
33
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 35 |
34
|
2eximi |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 36 |
|
2exsb |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 37 |
35 36
|
sylibr |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 38 |
|
biimp |
⊢ ( ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 39 |
38
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 40 |
39
|
2eximi |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 41 |
37 40
|
jca |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 42 |
32 41
|
impbii |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 43 |
1 42
|
bitri |
⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |