Metamath Proof Explorer


Theorem 2eu7

Description: Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 19-Feb-2005) (New usage is discouraged.)

Ref Expression
Assertion 2eu7 ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfe1 𝑥𝑥 𝜑
2 1 nfeu 𝑥 ∃! 𝑦𝑥 𝜑
3 2 euan ( ∃! 𝑥 ( ∃! 𝑦𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃! 𝑦𝑥 𝜑 ∧ ∃! 𝑥𝑦 𝜑 ) )
4 ancom ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃ 𝑥 𝜑 ) )
5 4 eubii ( ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑦 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑥 𝜑 ) )
6 nfe1 𝑦𝑦 𝜑
7 6 euan ( ∃! 𝑦 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) )
8 ancom ( ( ∃ 𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ( ∃! 𝑦𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) )
9 5 7 8 3bitri ( ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃! 𝑦𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) )
10 9 eubii ( ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑥 ( ∃! 𝑦𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) )
11 ancom ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ( ∃! 𝑦𝑥 𝜑 ∧ ∃! 𝑥𝑦 𝜑 ) )
12 3 10 11 3bitr4ri ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) )