Metamath Proof Explorer


Theorem 2euex

Description: Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2euexv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion 2euex ( ∃! 𝑥𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-eu ( ∃! 𝑥𝑦 𝜑 ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) )
2 excom ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 )
3 nfe1 𝑦𝑦 𝜑
4 3 nfmo 𝑦 ∃* 𝑥𝑦 𝜑
5 19.8a ( 𝜑 → ∃ 𝑦 𝜑 )
6 5 moimi ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑥 𝜑 )
7 moeu ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
8 6 7 sylib ( ∃* 𝑥𝑦 𝜑 → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) )
9 4 8 eximd ( ∃* 𝑥𝑦 𝜑 → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) )
10 2 9 syl5bi ( ∃* 𝑥𝑦 𝜑 → ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) )
11 10 impcom ( ( ∃ 𝑥𝑦 𝜑 ∧ ∃* 𝑥𝑦 𝜑 ) → ∃ 𝑦 ∃! 𝑥 𝜑 )
12 1 11 sylbi ( ∃! 𝑥𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 )