Metamath Proof Explorer
		
		
		
		Description:  Nested unique existential quantifier and at-most-one quantifier.
     (Contributed by NM, 3-Dec-2001)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 2eumo | ⊢  ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euimmo | ⊢ ( ∀ 𝑥 ( ∃! 𝑦 𝜑  →  ∃* 𝑦 𝜑 )  →  ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 ) ) | 
						
							| 2 |  | eumo | ⊢ ( ∃! 𝑦 𝜑  →  ∃* 𝑦 𝜑 ) | 
						
							| 3 | 1 2 | mpg | ⊢ ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 ) |