Description: Theorem *11.521 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2exanali | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | con1bii | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |
| 3 | annim | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑 → 𝜓 ) ) | |
| 4 | 3 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ¬ ( 𝜑 → 𝜓 ) ) |
| 5 | 2 4 | xchnxbir | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ) |