Metamath Proof Explorer


Theorem 2exanali

Description: Theorem *11.521 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exanali ( ¬ ∃ 𝑥𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∀ 𝑥𝑦 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 2nalexn ( ¬ ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑦 ¬ ( 𝜑𝜓 ) )
2 1 con1bii ( ¬ ∃ 𝑥𝑦 ¬ ( 𝜑𝜓 ) ↔ ∀ 𝑥𝑦 ( 𝜑𝜓 ) )
3 annim ( ( 𝜑 ∧ ¬ 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 3 2exbii ( ∃ 𝑥𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∃ 𝑥𝑦 ¬ ( 𝜑𝜓 ) )
5 2 4 xchnxbir ( ¬ ∃ 𝑥𝑦 ( 𝜑 ∧ ¬ 𝜓 ) ↔ ∀ 𝑥𝑦 ( 𝜑𝜓 ) )