Metamath Proof Explorer


Theorem 2exbidv

Description: Formula-building rule for two existential quantifiers (deduction form). (Contributed by NM, 1-May-1995)

Ref Expression
Hypothesis 2albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 2exbidv ( 𝜑 → ( ∃ 𝑥𝑦 𝜓 ↔ ∃ 𝑥𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 exbidv ( 𝜑 → ( ∃ 𝑦 𝜓 ↔ ∃ 𝑦 𝜒 ) )
3 2 exbidv ( 𝜑 → ( ∃ 𝑥𝑦 𝜓 ↔ ∃ 𝑥𝑦 𝜒 ) )