Metamath Proof Explorer


Theorem 2exeuv

Description: Double existential uniqueness implies double unique existential quantification. Version of 2exeu with x and y distinct, but not requiring ax-13 . (Contributed by NM, 3-Dec-2001) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Assertion 2exeuv ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 )

Proof

Step Hyp Ref Expression
1 eumo ( ∃! 𝑥𝑦 𝜑 → ∃* 𝑥𝑦 𝜑 )
2 euex ( ∃! 𝑦 𝜑 → ∃ 𝑦 𝜑 )
3 2 moimi ( ∃* 𝑥𝑦 𝜑 → ∃* 𝑥 ∃! 𝑦 𝜑 )
4 1 3 syl ( ∃! 𝑥𝑦 𝜑 → ∃* 𝑥 ∃! 𝑦 𝜑 )
5 2euexv ( ∃! 𝑦𝑥 𝜑 → ∃ 𝑥 ∃! 𝑦 𝜑 )
6 4 5 anim12ci ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ( ∃ 𝑥 ∃! 𝑦 𝜑 ∧ ∃* 𝑥 ∃! 𝑦 𝜑 ) )
7 df-eu ( ∃! 𝑥 ∃! 𝑦 𝜑 ↔ ( ∃ 𝑥 ∃! 𝑦 𝜑 ∧ ∃* 𝑥 ∃! 𝑦 𝜑 ) )
8 6 7 sylibr ( ( ∃! 𝑥𝑦 𝜑 ∧ ∃! 𝑦𝑥 𝜑 ) → ∃! 𝑥 ∃! 𝑦 𝜑 )