Metamath Proof Explorer


Theorem 2eximi

Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005)

Ref Expression
Hypothesis eximi.1 ( 𝜑𝜓 )
Assertion 2eximi ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑥𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 eximi.1 ( 𝜑𝜓 )
2 1 eximi ( ∃ 𝑦 𝜑 → ∃ 𝑦 𝜓 )
3 2 eximi ( ∃ 𝑥𝑦 𝜑 → ∃ 𝑥𝑦 𝜓 )