Description: Theorem *11.22 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 2exnaln | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∃ 𝑦 𝜑 ) | |
2 | alnex | ⊢ ( ∀ 𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑦 𝜑 ) | |
3 | 2 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ↔ ∀ 𝑥 ¬ ∃ 𝑦 𝜑 ) |
4 | 1 3 | xchbinxr | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |