Metamath Proof Explorer
Description: Theorem *11.51 in WhiteheadRussell p. 164. (Contributed by Andrew
Salmon, 24-May-2011) (Proof shortened by Wolf Lammen, 25-Sep-2014)
|
|
Ref |
Expression |
|
Assertion |
2exnexn |
⊢ ( ∃ 𝑥 ∀ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alexn |
⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝜑 ) |
2 |
1
|
con2bii |
⊢ ( ∃ 𝑥 ∀ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |