Description: Two to the eleventh power is 2048. (Contributed by AV, 16-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2exp11 | ⊢ ( 2 ↑ ; 1 1 ) = ; ; ; 2 0 4 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
2 | 1 | eqcomi | ⊢ ; 1 1 = ( 8 + 3 ) |
3 | 2 | oveq2i | ⊢ ( 2 ↑ ; 1 1 ) = ( 2 ↑ ( 8 + 3 ) ) |
4 | 2cn | ⊢ 2 ∈ ℂ | |
5 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
7 | expadd | ⊢ ( ( 2 ∈ ℂ ∧ 8 ∈ ℕ0 ∧ 3 ∈ ℕ0 ) → ( 2 ↑ ( 8 + 3 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) ) | |
8 | 4 5 6 7 | mp3an | ⊢ ( 2 ↑ ( 8 + 3 ) ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) |
9 | 3 8 | eqtri | ⊢ ( 2 ↑ ; 1 1 ) = ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) |
10 | 2exp8 | ⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 | |
11 | cu2 | ⊢ ( 2 ↑ 3 ) = 8 | |
12 | 10 11 | oveq12i | ⊢ ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) = ( ; ; 2 5 6 · 8 ) |
13 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
14 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
15 | 13 14 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
16 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
17 | eqid | ⊢ ; ; 2 5 6 = ; ; 2 5 6 | |
18 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
19 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
20 | 13 19 | deccl | ⊢ ; 2 0 ∈ ℕ0 |
21 | eqid | ⊢ ; 2 5 = ; 2 5 | |
22 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
23 | 8cn | ⊢ 8 ∈ ℂ | |
24 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
25 | 23 4 24 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
26 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
27 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
28 | 22 16 18 25 26 19 27 | decaddci | ⊢ ( ( 2 · 8 ) + 4 ) = ; 2 0 |
29 | 5cn | ⊢ 5 ∈ ℂ | |
30 | 8t5e40 | ⊢ ( 8 · 5 ) = ; 4 0 | |
31 | 23 29 30 | mulcomli | ⊢ ( 5 · 8 ) = ; 4 0 |
32 | 5 13 14 21 19 18 28 31 | decmul1c | ⊢ ( ; 2 5 · 8 ) = ; ; 2 0 0 |
33 | 4cn | ⊢ 4 ∈ ℂ | |
34 | 33 | addid2i | ⊢ ( 0 + 4 ) = 4 |
35 | 20 19 18 32 34 | decaddi | ⊢ ( ( ; 2 5 · 8 ) + 4 ) = ; ; 2 0 4 |
36 | 6cn | ⊢ 6 ∈ ℂ | |
37 | 8t6e48 | ⊢ ( 8 · 6 ) = ; 4 8 | |
38 | 23 36 37 | mulcomli | ⊢ ( 6 · 8 ) = ; 4 8 |
39 | 5 15 16 17 5 18 35 38 | decmul1c | ⊢ ( ; ; 2 5 6 · 8 ) = ; ; ; 2 0 4 8 |
40 | 12 39 | eqtri | ⊢ ( ( 2 ↑ 8 ) · ( 2 ↑ 3 ) ) = ; ; ; 2 0 4 8 |
41 | 9 40 | eqtri | ⊢ ( 2 ↑ ; 1 1 ) = ; ; ; 2 0 4 8 |