| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3p2e5 | ⊢ ( 3  +  2 )  =  5 | 
						
							| 2 | 1 | eqcomi | ⊢ 5  =  ( 3  +  2 ) | 
						
							| 3 | 2 | oveq2i | ⊢ ( 2 ↑ 5 )  =  ( 2 ↑ ( 3  +  2 ) ) | 
						
							| 4 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 5 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 6 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 7 |  | expadd | ⊢ ( ( 2  ∈  ℂ  ∧  3  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( 2 ↑ ( 3  +  2 ) )  =  ( ( 2 ↑ 3 )  ·  ( 2 ↑ 2 ) ) ) | 
						
							| 8 | 4 5 6 7 | mp3an | ⊢ ( 2 ↑ ( 3  +  2 ) )  =  ( ( 2 ↑ 3 )  ·  ( 2 ↑ 2 ) ) | 
						
							| 9 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 10 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 11 | 9 10 | oveq12i | ⊢ ( ( 2 ↑ 3 )  ·  ( 2 ↑ 2 ) )  =  ( 8  ·  4 ) | 
						
							| 12 | 8 11 | eqtri | ⊢ ( 2 ↑ ( 3  +  2 ) )  =  ( 8  ·  4 ) | 
						
							| 13 | 3 12 | eqtri | ⊢ ( 2 ↑ 5 )  =  ( 8  ·  4 ) | 
						
							| 14 |  | 8t4e32 | ⊢ ( 8  ·  4 )  =  ; 3 2 | 
						
							| 15 | 13 14 | eqtri | ⊢ ( 2 ↑ 5 )  =  ; 3 2 |