Step |
Hyp |
Ref |
Expression |
1 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
2 |
1
|
eqcomi |
⊢ 5 = ( 3 + 2 ) |
3 |
2
|
oveq2i |
⊢ ( 2 ↑ 5 ) = ( 2 ↑ ( 3 + 2 ) ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
7 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 3 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 2 ↑ ( 3 + 2 ) ) = ( ( 2 ↑ 3 ) · ( 2 ↑ 2 ) ) ) |
8 |
4 5 6 7
|
mp3an |
⊢ ( 2 ↑ ( 3 + 2 ) ) = ( ( 2 ↑ 3 ) · ( 2 ↑ 2 ) ) |
9 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
10 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
11 |
9 10
|
oveq12i |
⊢ ( ( 2 ↑ 3 ) · ( 2 ↑ 2 ) ) = ( 8 · 4 ) |
12 |
8 11
|
eqtri |
⊢ ( 2 ↑ ( 3 + 2 ) ) = ( 8 · 4 ) |
13 |
3 12
|
eqtri |
⊢ ( 2 ↑ 5 ) = ( 8 · 4 ) |
14 |
|
8t4e32 |
⊢ ( 8 · 4 ) = ; 3 2 |
15 |
13 14
|
eqtri |
⊢ ( 2 ↑ 5 ) = ; 3 2 |