| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-7 | ⊢ 7  =  ( 6  +  1 ) | 
						
							| 2 | 1 | oveq2i | ⊢ ( 2 ↑ 7 )  =  ( 2 ↑ ( 6  +  1 ) ) | 
						
							| 3 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 4 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 5 |  | expp1 | ⊢ ( ( 2  ∈  ℂ  ∧  6  ∈  ℕ0 )  →  ( 2 ↑ ( 6  +  1 ) )  =  ( ( 2 ↑ 6 )  ·  2 ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 2 ↑ ( 6  +  1 ) )  =  ( ( 2 ↑ 6 )  ·  2 ) | 
						
							| 7 |  | 2exp6 | ⊢ ( 2 ↑ 6 )  =  ; 6 4 | 
						
							| 8 | 7 | oveq1i | ⊢ ( ( 2 ↑ 6 )  ·  2 )  =  ( ; 6 4  ·  2 ) | 
						
							| 9 | 6 8 | eqtri | ⊢ ( 2 ↑ ( 6  +  1 ) )  =  ( ; 6 4  ·  2 ) | 
						
							| 10 | 2 9 | eqtri | ⊢ ( 2 ↑ 7 )  =  ( ; 6 4  ·  2 ) | 
						
							| 11 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 12 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 13 |  | eqid | ⊢ ; 6 4  =  ; 6 4 | 
						
							| 14 |  | 6t2e12 | ⊢ ( 6  ·  2 )  =  ; 1 2 | 
						
							| 15 |  | 4t2e8 | ⊢ ( 4  ·  2 )  =  8 | 
						
							| 16 | 11 4 12 13 14 15 | decmul1 | ⊢ ( ; 6 4  ·  2 )  =  ; ; 1 2 8 | 
						
							| 17 | 10 16 | eqtri | ⊢ ( 2 ↑ 7 )  =  ; ; 1 2 8 |