Step |
Hyp |
Ref |
Expression |
1 |
|
df-7 |
⊢ 7 = ( 6 + 1 ) |
2 |
1
|
oveq2i |
⊢ ( 2 ↑ 7 ) = ( 2 ↑ ( 6 + 1 ) ) |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
5 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 6 ∈ ℕ0 ) → ( 2 ↑ ( 6 + 1 ) ) = ( ( 2 ↑ 6 ) · 2 ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 2 ↑ ( 6 + 1 ) ) = ( ( 2 ↑ 6 ) · 2 ) |
7 |
|
2exp6 |
⊢ ( 2 ↑ 6 ) = ; 6 4 |
8 |
7
|
oveq1i |
⊢ ( ( 2 ↑ 6 ) · 2 ) = ( ; 6 4 · 2 ) |
9 |
6 8
|
eqtri |
⊢ ( 2 ↑ ( 6 + 1 ) ) = ( ; 6 4 · 2 ) |
10 |
2 9
|
eqtri |
⊢ ( 2 ↑ 7 ) = ( ; 6 4 · 2 ) |
11 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
12 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
13 |
|
eqid |
⊢ ; 6 4 = ; 6 4 |
14 |
|
6t2e12 |
⊢ ( 6 · 2 ) = ; 1 2 |
15 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
16 |
11 4 12 13 14 15
|
decmul1 |
⊢ ( ; 6 4 · 2 ) = ; ; 1 2 8 |
17 |
10 16
|
eqtri |
⊢ ( 2 ↑ 7 ) = ; ; 1 2 8 |