Metamath Proof Explorer


Theorem 2exp8

Description: Two to the eighth power is 256. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 2exp8 ( 2 ↑ 8 ) = 2 5 6

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 4nn0 4 ∈ ℕ0
3 2 nn0cni 4 ∈ ℂ
4 2cn 2 ∈ ℂ
5 4t2e8 ( 4 · 2 ) = 8
6 3 4 5 mulcomli ( 2 · 4 ) = 8
7 2exp4 ( 2 ↑ 4 ) = 1 6
8 1nn0 1 ∈ ℕ0
9 6nn0 6 ∈ ℕ0
10 8 9 deccl 1 6 ∈ ℕ0
11 eqid 1 6 = 1 6
12 9nn0 9 ∈ ℕ0
13 10 nn0cni 1 6 ∈ ℂ
14 13 mulid1i ( 1 6 · 1 ) = 1 6
15 1p1e2 ( 1 + 1 ) = 2
16 5nn0 5 ∈ ℕ0
17 9cn 9 ∈ ℂ
18 6cn 6 ∈ ℂ
19 9p6e15 ( 9 + 6 ) = 1 5
20 17 18 19 addcomli ( 6 + 9 ) = 1 5
21 8 9 12 14 15 16 20 decaddci ( ( 1 6 · 1 ) + 9 ) = 2 5
22 3nn0 3 ∈ ℕ0
23 18 mulid2i ( 1 · 6 ) = 6
24 23 oveq1i ( ( 1 · 6 ) + 3 ) = ( 6 + 3 )
25 6p3e9 ( 6 + 3 ) = 9
26 24 25 eqtri ( ( 1 · 6 ) + 3 ) = 9
27 6t6e36 ( 6 · 6 ) = 3 6
28 9 8 9 11 9 22 26 27 decmul1c ( 1 6 · 6 ) = 9 6
29 10 8 9 11 9 12 21 28 decmul2c ( 1 6 · 1 6 ) = 2 5 6
30 1 2 6 7 29 numexp2x ( 2 ↑ 8 ) = 2 5 6