Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 4 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 4 ) ) |
2 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
3 |
1 2
|
eqtrdi |
⊢ ( 𝑥 = 4 → ( 2 ↑ 𝑥 ) = ; 1 6 ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = 4 → ( ! ‘ 𝑥 ) = ( ! ‘ 4 ) ) |
5 |
|
fac4 |
⊢ ( ! ‘ 4 ) = ; 2 4 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = 4 → ( ! ‘ 𝑥 ) = ; 2 4 ) |
7 |
3 6
|
breq12d |
⊢ ( 𝑥 = 4 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ; 1 6 < ; 2 4 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑛 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑛 ) ) |
10 |
8 9
|
breq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( 2 ↑ 𝑥 ) = ( 2 ↑ ( 𝑛 + 1 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ! ‘ 𝑥 ) = ( ! ‘ ( 𝑛 + 1 ) ) ) |
13 |
11 12
|
breq12d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2 ↑ 𝑥 ) = ( 2 ↑ 𝑁 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑁 → ( ! ‘ 𝑥 ) = ( ! ‘ 𝑁 ) ) |
16 |
14 15
|
breq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 2 ↑ 𝑥 ) < ( ! ‘ 𝑥 ) ↔ ( 2 ↑ 𝑁 ) < ( ! ‘ 𝑁 ) ) ) |
17 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
20 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
21 |
|
6lt10 |
⊢ 6 < ; 1 0 |
22 |
|
1lt2 |
⊢ 1 < 2 |
23 |
17 18 19 20 21 22
|
decltc |
⊢ ; 1 6 < ; 2 4 |
24 |
|
2nn |
⊢ 2 ∈ ℕ |
25 |
24
|
a1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℕ ) |
26 |
|
4nn |
⊢ 4 ∈ ℕ |
27 |
|
simpl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 4 ) ) |
28 |
|
eluznn |
⊢ ( ( 4 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 4 ) ) → 𝑛 ∈ ℕ ) |
29 |
26 27 28
|
sylancr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
30 |
29
|
nnnn0d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
31 |
25 30
|
nnexpcld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
32 |
31
|
nnred |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
33 |
|
2re |
⊢ 2 ∈ ℝ |
34 |
33
|
a1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℝ ) |
35 |
32 34
|
remulcld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) ∈ ℝ ) |
36 |
30
|
faccld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℕ ) |
37 |
36
|
nnred |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℝ ) |
38 |
37 34
|
remulcld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · 2 ) ∈ ℝ ) |
39 |
29
|
nnred |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
40 |
|
1red |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 1 ∈ ℝ ) |
41 |
39 40
|
readdcld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
42 |
37 41
|
remulcld |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ∈ ℝ ) |
43 |
|
2rp |
⊢ 2 ∈ ℝ+ |
44 |
43
|
a1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℝ+ ) |
45 |
|
simpr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) |
46 |
32 37 44 45
|
ltmul1dd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) < ( ( ! ‘ 𝑛 ) · 2 ) ) |
47 |
36
|
nnnn0d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ 𝑛 ) ∈ ℕ0 ) |
48 |
47
|
nn0ge0d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 0 ≤ ( ! ‘ 𝑛 ) ) |
49 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
50 |
29
|
nnge1d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 1 ≤ 𝑛 ) |
51 |
40 39 40 50
|
leadd1dd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 1 + 1 ) ≤ ( 𝑛 + 1 ) ) |
52 |
49 51
|
eqbrtrid |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ≤ ( 𝑛 + 1 ) ) |
53 |
34 41 37 48 52
|
lemul2ad |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( ! ‘ 𝑛 ) · 2 ) ≤ ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
54 |
35 38 42 46 53
|
ltletrd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ( 2 ↑ 𝑛 ) · 2 ) < ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
55 |
|
2cnd |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → 2 ∈ ℂ ) |
56 |
55 30
|
expp1d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ ( 𝑛 + 1 ) ) = ( ( 2 ↑ 𝑛 ) · 2 ) ) |
57 |
|
facp1 |
⊢ ( 𝑛 ∈ ℕ0 → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
58 |
30 57
|
syl |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( ! ‘ ( 𝑛 + 1 ) ) = ( ( ! ‘ 𝑛 ) · ( 𝑛 + 1 ) ) ) |
59 |
54 56 58
|
3brtr4d |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) ∧ ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) ) → ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) |
60 |
59
|
ex |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 4 ) → ( ( 2 ↑ 𝑛 ) < ( ! ‘ 𝑛 ) → ( 2 ↑ ( 𝑛 + 1 ) ) < ( ! ‘ ( 𝑛 + 1 ) ) ) ) |
61 |
7 10 13 16 23 60
|
uzind4i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 4 ) → ( 2 ↑ 𝑁 ) < ( ! ‘ 𝑁 ) ) |