Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | 2exsb | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
2 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
3 | 1 2 | 2sb8ev | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
4 | 2sb6 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) | |
5 | 4 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
6 | 3 5 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |