Metamath Proof Explorer


Theorem 2exsb

Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005) (Proof shortened by Wolf Lammen, 30-Sep-2018)

Ref Expression
Assertion 2exsb ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑤 𝜑
2 nfv 𝑧 𝜑
3 1 2 2sb8ev ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
4 2sb6 ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝜑 ) )
5 4 2exbii ( ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝜑 ) )
6 3 5 bitri ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤𝑥𝑦 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝜑 ) )