Step |
Hyp |
Ref |
Expression |
1 |
|
f1veqaeq |
⊢ ( ( 𝐹 : 𝐶 –1-1→ 𝐷 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
2 |
1
|
adantll |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → 𝐴 = 𝐵 ) ) |
3 |
2
|
necon3ad |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( 𝐴 ≠ 𝐵 → ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
4 |
3
|
3impia |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
5 |
|
simpll |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → 𝐸 : 𝐷 –1-1→ 𝑅 ) |
6 |
|
f1f |
⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 → 𝐹 : 𝐶 ⟶ 𝐷 ) |
7 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ) |
8 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ 𝐵 ∈ 𝐶 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) |
9 |
7 8
|
anim12dan |
⊢ ( ( 𝐹 : 𝐶 ⟶ 𝐷 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) |
10 |
9
|
ex |
⊢ ( 𝐹 : 𝐶 ⟶ 𝐷 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) ) |
11 |
6 10
|
syl |
⊢ ( 𝐹 : 𝐶 –1-1→ 𝐷 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) |
14 |
|
f1veqaeq |
⊢ ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝐷 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐷 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
15 |
5 13 14
|
syl2anc |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
16 |
15
|
con3dimp |
⊢ ( ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) → ¬ ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
17 |
|
eqeq12 |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ 𝑋 = 𝑌 ) ) |
18 |
17
|
notbid |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( ¬ ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ¬ 𝑋 = 𝑌 ) ) |
19 |
|
neqne |
⊢ ( ¬ 𝑋 = 𝑌 → 𝑋 ≠ 𝑌 ) |
20 |
18 19
|
syl6bi |
⊢ ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → ( ¬ ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) → 𝑋 ≠ 𝑌 ) ) |
21 |
16 20
|
syl5com |
⊢ ( ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) ∧ ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |
22 |
21
|
ex |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ) → ( ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) ) |
23 |
22
|
3adant3 |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( ¬ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) ) |
24 |
4 23
|
mpd |
⊢ ( ( ( 𝐸 : 𝐷 –1-1→ 𝑅 ∧ 𝐹 : 𝐶 –1-1→ 𝐷 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐸 ‘ ( 𝐹 ‘ 𝐴 ) ) = 𝑋 ∧ ( 𝐸 ‘ ( 𝐹 ‘ 𝐵 ) ) = 𝑌 ) → 𝑋 ≠ 𝑌 ) ) |