Metamath Proof Explorer


Theorem 2fcoidinvd

Description: Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses fcof1od.f ( 𝜑𝐹 : 𝐴𝐵 )
fcof1od.g ( 𝜑𝐺 : 𝐵𝐴 )
fcof1od.a ( 𝜑 → ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) )
fcof1od.b ( 𝜑 → ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) )
Assertion 2fcoidinvd ( 𝜑 𝐹 = 𝐺 )

Proof

Step Hyp Ref Expression
1 fcof1od.f ( 𝜑𝐹 : 𝐴𝐵 )
2 fcof1od.g ( 𝜑𝐺 : 𝐵𝐴 )
3 fcof1od.a ( 𝜑 → ( 𝐺𝐹 ) = ( I ↾ 𝐴 ) )
4 fcof1od.b ( 𝜑 → ( 𝐹𝐺 ) = ( I ↾ 𝐵 ) )
5 1 2 3 4 fcof1od ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
6 5 2 4 fcof1oinvd ( 𝜑 𝐹 = 𝐺 )