Step |
Hyp |
Ref |
Expression |
1 |
|
2fvcoidd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
2 |
|
2fvcoidd.g |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
3 |
|
2fvcoidd.i |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ) |
4 |
|
fcompt |
⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
5 |
2 1 4
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
6 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑥 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
7 |
|
id |
⊢ ( 𝑎 = 𝑥 → 𝑎 = 𝑥 ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 ↔ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
9 |
8
|
rspccv |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐺 ‘ ( 𝐹 ‘ 𝑎 ) ) = 𝑎 → ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
10 |
3 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
12 |
11
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ) |
13 |
|
mptresid |
⊢ ( I ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) |
14 |
12 13
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( I ↾ 𝐴 ) ) |
15 |
5 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) |