Step |
Hyp |
Ref |
Expression |
1 |
|
2gencl.1 |
⊢ ( 𝐶 ∈ 𝑆 ↔ ∃ 𝑥 ∈ 𝑅 𝐴 = 𝐶 ) |
2 |
|
2gencl.2 |
⊢ ( 𝐷 ∈ 𝑆 ↔ ∃ 𝑦 ∈ 𝑅 𝐵 = 𝐷 ) |
3 |
|
2gencl.3 |
⊢ ( 𝐴 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
2gencl.4 |
⊢ ( 𝐵 = 𝐷 → ( 𝜓 ↔ 𝜒 ) ) |
5 |
|
2gencl.5 |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → 𝜑 ) |
6 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑅 𝐵 = 𝐷 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑅 ∧ 𝐵 = 𝐷 ) ) |
7 |
2 6
|
bitri |
⊢ ( 𝐷 ∈ 𝑆 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑅 ∧ 𝐵 = 𝐷 ) ) |
8 |
4
|
imbi2d |
⊢ ( 𝐵 = 𝐷 → ( ( 𝐶 ∈ 𝑆 → 𝜓 ) ↔ ( 𝐶 ∈ 𝑆 → 𝜒 ) ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑅 𝐴 = 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑅 ∧ 𝐴 = 𝐶 ) ) |
10 |
1 9
|
bitri |
⊢ ( 𝐶 ∈ 𝑆 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑅 ∧ 𝐴 = 𝐶 ) ) |
11 |
3
|
imbi2d |
⊢ ( 𝐴 = 𝐶 → ( ( 𝑦 ∈ 𝑅 → 𝜑 ) ↔ ( 𝑦 ∈ 𝑅 → 𝜓 ) ) ) |
12 |
5
|
ex |
⊢ ( 𝑥 ∈ 𝑅 → ( 𝑦 ∈ 𝑅 → 𝜑 ) ) |
13 |
10 11 12
|
gencl |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝑦 ∈ 𝑅 → 𝜓 ) ) |
14 |
13
|
com12 |
⊢ ( 𝑦 ∈ 𝑅 → ( 𝐶 ∈ 𝑆 → 𝜓 ) ) |
15 |
7 8 14
|
gencl |
⊢ ( 𝐷 ∈ 𝑆 → ( 𝐶 ∈ 𝑆 → 𝜒 ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆 ) → 𝜒 ) |