| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfv1fvfmla1.x | ⊢ 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐼  ∈  ω ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐽  ∈  ω ) | 
						
							| 4 |  | simprl | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐾  ∈  ω ) | 
						
							| 5 |  | simprr | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝐿  ∈  ω ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑛  =  𝐿  →  ( 𝐾 ∈𝑔 𝑛 )  =  ( 𝐾 ∈𝑔 𝐿 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑛  =  𝐿  →  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) | 
						
							| 8 | 7 | eqeq2d | ⊢ ( 𝑛  =  𝐿  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  ∧  𝑛  =  𝐿 )  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) | 
						
							| 10 | 1 | a1i | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) | 
						
							| 11 | 5 9 10 | rspcedvd | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) | 
						
							| 12 | 11 | orcd | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑖  =  𝐼  →  ( 𝑖 ∈𝑔 𝑗 )  =  ( 𝐼 ∈𝑔 𝑗 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 17 |  | eqidd | ⊢ ( 𝑖  =  𝐼  →  𝑘  =  𝑘 ) | 
						
							| 18 | 17 13 | goaleq12d | ⊢ ( 𝑖  =  𝐼  →  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 )  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( 𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) ) | 
						
							| 20 | 16 19 | orbi12d | ⊢ ( 𝑖  =  𝐼  →  ( ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑗  =  𝐽  →  ( 𝐼 ∈𝑔 𝑗 )  =  ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑗  =  𝐽  →  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 24 | 23 | rexbidv | ⊢ ( 𝑗  =  𝐽  →  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 25 |  | eqidd | ⊢ ( 𝑗  =  𝐽  →  𝑘  =  𝑘 ) | 
						
							| 26 | 25 21 | goaleq12d | ⊢ ( 𝑗  =  𝐽  →  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 )  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑗  =  𝐽  →  ( 𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) ) | 
						
							| 28 | 24 27 | orbi12d | ⊢ ( 𝑗  =  𝐽  →  ( ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑘 ∈𝑔 𝑛 )  =  ( 𝐾 ∈𝑔 𝑛 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑘  =  𝐾  →  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑘  =  𝐾  →  𝑘  =  𝐾 ) | 
						
							| 34 |  | eqidd | ⊢ ( 𝑘  =  𝐾  →  ( 𝐼 ∈𝑔 𝐽 )  =  ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 35 | 33 34 | goaleq12d | ⊢ ( 𝑘  =  𝐾  →  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 )  =  ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( 𝑘  =  𝐾  →  ( 𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 )  ↔  𝑋  =  ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) | 
						
							| 37 | 32 36 | orbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) ) | 
						
							| 38 | 20 28 37 | rspc3ev | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω  ∧  𝐾  ∈  ω )  ∧  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) )  →  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 39 | 2 3 4 12 38 | syl31anc | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 40 | 1 | ovexi | ⊢ 𝑋  ∈  V | 
						
							| 41 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 42 | 41 | rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ↔  ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | 
						
							| 43 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 )  ↔  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 44 | 42 43 | orbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) )  ↔  ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) | 
						
							| 45 | 44 | rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) )  ↔  ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) | 
						
							| 46 | 45 | 2rexbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) )  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) | 
						
							| 47 | 40 46 | elab | ⊢ ( 𝑋  ∈  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) }  ↔  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑋  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑋  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | 
						
							| 48 | 39 47 | sylibr | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) | 
						
							| 49 | 48 | olcd | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  ( 𝑋  ∈  ( { ∅ }  ×  ( ω  ×  ω ) )  ∨  𝑋  ∈  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) | 
						
							| 50 |  | elun | ⊢ ( 𝑋  ∈  ( ( { ∅ }  ×  ( ω  ×  ω ) )  ∪  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } )  ↔  ( 𝑋  ∈  ( { ∅ }  ×  ( ω  ×  ω ) )  ∨  𝑋  ∈  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) | 
						
							| 51 | 49 50 | sylibr | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  ( ( { ∅ }  ×  ( ω  ×  ω ) )  ∪  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) | 
						
							| 52 |  | fmla1 | ⊢ ( Fmla ‘ 1o )  =  ( ( { ∅ }  ×  ( ω  ×  ω ) )  ∪  { 𝑥  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ∃ 𝑘  ∈  ω ( ∃ 𝑛  ∈  ω 𝑥  =  ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) )  ∨  𝑥  =  ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) | 
						
							| 53 | 51 52 | eleqtrrdi | ⊢ ( ( ( 𝐼  ∈  ω  ∧  𝐽  ∈  ω )  ∧  ( 𝐾  ∈  ω  ∧  𝐿  ∈  ω ) )  →  𝑋  ∈  ( Fmla ‘ 1o ) ) |