Metamath Proof Explorer


Theorem 2halves

Description: Two halves make a whole. (Contributed by NM, 11-Apr-2005)

Ref Expression
Assertion 2halves ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 2times ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) )
2 1 oveq1d ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = ( ( 𝐴 + 𝐴 ) / 2 ) )
3 2cn 2 ∈ ℂ
4 2ne0 2 ≠ 0
5 divcan3 ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 )
6 3 4 5 mp3an23 ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 )
7 2cnne0 ( 2 ∈ ℂ ∧ 2 ≠ 0 )
8 divdir ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) )
9 7 8 mp3an3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) )
10 9 anidms ( 𝐴 ∈ ℂ → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) )
11 2 6 10 3eqtr3rd ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )