Step |
Hyp |
Ref |
Expression |
1 |
|
2times |
⊢ ( 𝐴 ∈ ℂ → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = ( ( 𝐴 + 𝐴 ) / 2 ) ) |
3 |
|
2cn |
⊢ 2 ∈ ℂ |
4 |
|
2ne0 |
⊢ 2 ≠ 0 |
5 |
|
divcan3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
6 |
3 4 5
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · 𝐴 ) / 2 ) = 𝐴 ) |
7 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
8 |
|
divdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
9 |
7 8
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
10 |
9
|
anidms |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 𝐴 ) / 2 ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
11 |
2 6 10
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |