Metamath Proof Explorer


Theorem 2idlbas

Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlbas.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
2idlbas.j 𝐽 = ( 𝑅s 𝐼 )
2idlbas.b 𝐵 = ( Base ‘ 𝐽 )
Assertion 2idlbas ( 𝜑𝐵 = 𝐼 )

Proof

Step Hyp Ref Expression
1 2idlbas.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
2 2idlbas.j 𝐽 = ( 𝑅s 𝐼 )
3 2idlbas.b 𝐵 = ( Base ‘ 𝐽 )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
6 4 5 2idlss ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
7 2 4 ressbas2 ( 𝐼 ⊆ ( Base ‘ 𝑅 ) → 𝐼 = ( Base ‘ 𝐽 ) )
8 1 6 7 3syl ( 𝜑𝐼 = ( Base ‘ 𝐽 ) )
9 3 8 eqtr4id ( 𝜑𝐵 = 𝐼 )