Step |
Hyp |
Ref |
Expression |
1 |
|
2idlcpblrng.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
2 |
|
2idlcpblrng.r |
⊢ 𝐸 = ( 𝑅 ~QG 𝑆 ) |
3 |
|
2idlcpblrng.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
4 |
|
2idlcpblrng.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Rng ) |
6 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
7 |
1 2
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → 𝐸 Er 𝑋 ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐸 Er 𝑋 ) |
9 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 𝐸 𝐶 ) |
10 |
8 9
|
ersym |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 𝐸 𝐴 ) |
11 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Abel ) |
13 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
14 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
16 |
13 14 15 3
|
2idlelb |
⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
17 |
16
|
simplbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
20 |
1 13
|
lidlss |
⊢ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) → 𝑆 ⊆ 𝑋 ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ⊆ 𝑋 ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
23 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
24 |
12 21 23
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 𝐸 𝐴 ↔ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) ) |
25 |
10 24
|
mpbid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) |
26 |
25
|
simp2d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐴 ∈ 𝑋 ) |
27 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 𝐸 𝐷 ) |
28 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
29 |
12 21 28
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 𝐸 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) ) |
30 |
27 29
|
mpbid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) |
31 |
30
|
simp1d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐵 ∈ 𝑋 ) |
32 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
33 |
5 26 31 32
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) ∈ 𝑋 ) |
34 |
25
|
simp1d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐶 ∈ 𝑋 ) |
35 |
30
|
simp2d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝐷 ∈ 𝑋 ) |
36 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
37 |
5 34 35 36
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐷 ) ∈ 𝑋 ) |
38 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
39 |
38
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Grp ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑅 ∈ Grp ) |
41 |
1 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
42 |
5 34 31 41
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · 𝐵 ) ∈ 𝑋 ) |
43 |
1 22
|
grpnnncan2 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐵 ) ∈ 𝑋 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
44 |
40 37 33 42 43
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ) |
45 |
1 4 22 5 34 35 31
|
rngsubdi |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) = ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
47 |
46
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
48 |
47
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
50 |
30
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) |
51 |
46 1 4 13
|
rnglidlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐶 ∈ 𝑋 ∧ ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ∈ 𝑆 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
52 |
5 19 49 34 50 51
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐶 · ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) ) ∈ 𝑆 ) |
53 |
45 52
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
54 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
55 |
1 4 14 54
|
opprmul |
⊢ ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) |
56 |
1 4 22 5 26 34 31
|
rngsubdir |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
57 |
55 56
|
eqtrid |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) |
58 |
14
|
opprrng |
⊢ ( 𝑅 ∈ Rng → ( oppr ‘ 𝑅 ) ∈ Rng ) |
59 |
58
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( oppr ‘ 𝑅 ) ∈ Rng ) |
61 |
16
|
simprbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
62 |
61
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
64 |
25
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) |
65 |
14 46
|
oppr0 |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( oppr ‘ 𝑅 ) ) |
66 |
14 1
|
opprbas |
⊢ 𝑋 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
67 |
65 66 54 15
|
rnglidlmcl |
⊢ ( ( ( ( oppr ‘ 𝑅 ) ∈ Rng ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ) ∧ ( 𝐵 ∈ 𝑋 ∧ ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ∈ 𝑆 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
68 |
60 63 49 31 64 67
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) ) ∈ 𝑆 ) |
69 |
57 68
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) |
70 |
22
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ∧ ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ∈ 𝑆 ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
71 |
6 53 69 70
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴 · 𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶 · 𝐵 ) ) ) ∈ 𝑆 ) |
72 |
44 71
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) |
73 |
1 22 2
|
eqgabl |
⊢ ( ( 𝑅 ∈ Abel ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
74 |
12 21 73
|
syl2an2r |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ↔ ( ( 𝐴 · 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 · 𝐷 ) ∈ 𝑋 ∧ ( ( 𝐶 · 𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴 · 𝐵 ) ) ∈ 𝑆 ) ) ) |
75 |
33 37 72 74
|
mpbir3and |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) |
76 |
75
|
ex |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝐴 𝐸 𝐶 ∧ 𝐵 𝐸 𝐷 ) → ( 𝐴 · 𝐵 ) 𝐸 ( 𝐶 · 𝐷 ) ) ) |