| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2idlcpblrng.x | 
							⊢ 𝑋  =  ( Base ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							2idlcpblrng.r | 
							⊢ 𝐸  =  ( 𝑅  ~QG  𝑆 )  | 
						
						
							| 3 | 
							
								
							 | 
							2idlcpblrng.i | 
							⊢ 𝐼  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							2idlcpblrng.t | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑅  ∈  Rng )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							eqger | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  →  𝐸  Er  𝑋 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐸  Er  𝑋 )  | 
						
						
							| 9 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐴 𝐸 𝐶 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ersym | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐶 𝐸 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							rngabl | 
							⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑅  ∈  Abel )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( oppr ‘ 𝑅 )  =  ( oppr ‘ 𝑅 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  =  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  | 
						
						
							| 16 | 
							
								13 14 15 3
							 | 
							2idlelb | 
							⊢ ( 𝑆  ∈  𝐼  ↔  ( 𝑆  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑆  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simplbi | 
							⊢ ( 𝑆  ∈  𝐼  →  𝑆  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑆  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑆  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 20 | 
							
								1 13
							 | 
							lidlss | 
							⊢ ( 𝑆  ∈  ( LIdeal ‘ 𝑅 )  →  𝑆  ⊆  𝑋 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑆  ⊆  𝑋 )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 )  | 
						
						
							| 23 | 
							
								1 22 2
							 | 
							eqgabl | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  𝑆  ⊆  𝑋 )  →  ( 𝐶 𝐸 𝐴  ↔  ( 𝐶  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ∈  𝑆 ) ) )  | 
						
						
							| 24 | 
							
								12 21 23
							 | 
							syl2an2r | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶 𝐸 𝐴  ↔  ( 𝐶  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ∈  𝑆 ) ) )  | 
						
						
							| 25 | 
							
								10 24
							 | 
							mpbid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶  ∈  𝑋  ∧  𝐴  ∈  𝑋  ∧  ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ∈  𝑆 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simp2d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 27 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐵 𝐸 𝐷 )  | 
						
						
							| 28 | 
							
								1 22 2
							 | 
							eqgabl | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  𝑆  ⊆  𝑋 )  →  ( 𝐵 𝐸 𝐷  ↔  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 )  ∈  𝑆 ) ) )  | 
						
						
							| 29 | 
							
								12 21 28
							 | 
							syl2an2r | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐵 𝐸 𝐷  ↔  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 )  ∈  𝑆 ) ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							mpbid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐵  ∈  𝑋  ∧  𝐷  ∈  𝑋  ∧  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 )  ∈  𝑆 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simp1d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐵  ∈  𝑋 )  | 
						
						
							| 32 | 
							
								1 4
							 | 
							rngcl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ·  𝐵 )  ∈  𝑋 )  | 
						
						
							| 33 | 
							
								5 26 31 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐴  ·  𝐵 )  ∈  𝑋 )  | 
						
						
							| 34 | 
							
								25
							 | 
							simp1d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐶  ∈  𝑋 )  | 
						
						
							| 35 | 
							
								30
							 | 
							simp2d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝐷  ∈  𝑋 )  | 
						
						
							| 36 | 
							
								1 4
							 | 
							rngcl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐶  ∈  𝑋  ∧  𝐷  ∈  𝑋 )  →  ( 𝐶  ·  𝐷 )  ∈  𝑋 )  | 
						
						
							| 37 | 
							
								5 34 35 36
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶  ·  𝐷 )  ∈  𝑋 )  | 
						
						
							| 38 | 
							
								
							 | 
							rnggrp | 
							⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp )  | 
						
						
							| 39 | 
							
								38
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑅  ∈  Grp )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑅  ∈  Grp )  | 
						
						
							| 41 | 
							
								1 4
							 | 
							rngcl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝐶  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐶  ·  𝐵 )  ∈  𝑋 )  | 
						
						
							| 42 | 
							
								5 34 31 41
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶  ·  𝐵 )  ∈  𝑋 )  | 
						
						
							| 43 | 
							
								1 22
							 | 
							grpnnncan2 | 
							⊢ ( ( 𝑅  ∈  Grp  ∧  ( ( 𝐶  ·  𝐷 )  ∈  𝑋  ∧  ( 𝐴  ·  𝐵 )  ∈  𝑋  ∧  ( 𝐶  ·  𝐵 )  ∈  𝑋 ) )  →  ( ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  =  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴  ·  𝐵 ) ) )  | 
						
						
							| 44 | 
							
								40 37 33 42 43
							 | 
							syl13anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  =  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴  ·  𝐵 ) ) )  | 
						
						
							| 45 | 
							
								1 4 22 5 34 35 31
							 | 
							rngsubdi | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶  ·  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) )  =  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 )  | 
						
						
							| 47 | 
							
								46
							 | 
							subg0cl | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  →  ( 0g ‘ 𝑅 )  ∈  𝑆 )  | 
						
						
							| 48 | 
							
								47
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( 0g ‘ 𝑅 )  ∈  𝑆 )  | 
						
						
							| 49 | 
							
								48
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 0g ‘ 𝑅 )  ∈  𝑆 )  | 
						
						
							| 50 | 
							
								30
							 | 
							simp3d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 )  ∈  𝑆 )  | 
						
						
							| 51 | 
							
								46 1 4 13
							 | 
							rnglidlmcl | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( 0g ‘ 𝑅 )  ∈  𝑆 )  ∧  ( 𝐶  ∈  𝑋  ∧  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 )  ∈  𝑆 ) )  →  ( 𝐶  ·  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) )  ∈  𝑆 )  | 
						
						
							| 52 | 
							
								5 19 49 34 50 51
							 | 
							syl32anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐶  ·  ( 𝐷 ( -g ‘ 𝑅 ) 𝐵 ) )  ∈  𝑆 )  | 
						
						
							| 53 | 
							
								45 52
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) )  ∈  𝑆 )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							⊢ ( .r ‘ ( oppr ‘ 𝑅 ) )  =  ( .r ‘ ( oppr ‘ 𝑅 ) )  | 
						
						
							| 55 | 
							
								1 4 14 54
							 | 
							opprmul | 
							⊢ ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) )  =  ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ·  𝐵 )  | 
						
						
							| 56 | 
							
								1 4 22 5 26 34 31
							 | 
							rngsubdir | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ·  𝐵 )  =  ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eqtrid | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) )  =  ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  | 
						
						
							| 58 | 
							
								14
							 | 
							opprrng | 
							⊢ ( 𝑅  ∈  Rng  →  ( oppr ‘ 𝑅 )  ∈  Rng )  | 
						
						
							| 59 | 
							
								58
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( oppr ‘ 𝑅 )  ∈  Rng )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( oppr ‘ 𝑅 )  ∈  Rng )  | 
						
						
							| 61 | 
							
								16
							 | 
							simprbi | 
							⊢ ( 𝑆  ∈  𝐼  →  𝑆  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑆  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  𝑆  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) )  | 
						
						
							| 64 | 
							
								25
							 | 
							simp3d | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ∈  𝑆 )  | 
						
						
							| 65 | 
							
								14 46
							 | 
							oppr0 | 
							⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ ( oppr ‘ 𝑅 ) )  | 
						
						
							| 66 | 
							
								14 1
							 | 
							opprbas | 
							⊢ 𝑋  =  ( Base ‘ ( oppr ‘ 𝑅 ) )  | 
						
						
							| 67 | 
							
								65 66 54 15
							 | 
							rnglidlmcl | 
							⊢ ( ( ( ( oppr ‘ 𝑅 )  ∈  Rng  ∧  𝑆  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  ∧  ( 0g ‘ 𝑅 )  ∈  𝑆 )  ∧  ( 𝐵  ∈  𝑋  ∧  ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 )  ∈  𝑆 ) )  →  ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) )  ∈  𝑆 )  | 
						
						
							| 68 | 
							
								60 63 49 31 64 67
							 | 
							syl32anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐵 ( .r ‘ ( oppr ‘ 𝑅 ) ) ( 𝐴 ( -g ‘ 𝑅 ) 𝐶 ) )  ∈  𝑆 )  | 
						
						
							| 69 | 
							
								57 68
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) )  ∈  𝑆 )  | 
						
						
							| 70 | 
							
								22
							 | 
							subgsubcl | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  ∧  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) )  ∈  𝑆  ∧  ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) )  ∈  𝑆 )  →  ( ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  ∈  𝑆 )  | 
						
						
							| 71 | 
							
								6 53 69 70
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) ( -g ‘ 𝑅 ) ( ( 𝐴  ·  𝐵 ) ( -g ‘ 𝑅 ) ( 𝐶  ·  𝐵 ) ) )  ∈  𝑆 )  | 
						
						
							| 72 | 
							
								44 71
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴  ·  𝐵 ) )  ∈  𝑆 )  | 
						
						
							| 73 | 
							
								1 22 2
							 | 
							eqgabl | 
							⊢ ( ( 𝑅  ∈  Abel  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝐴  ·  𝐵 ) 𝐸 ( 𝐶  ·  𝐷 )  ↔  ( ( 𝐴  ·  𝐵 )  ∈  𝑋  ∧  ( 𝐶  ·  𝐷 )  ∈  𝑋  ∧  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴  ·  𝐵 ) )  ∈  𝑆 ) ) )  | 
						
						
							| 74 | 
							
								12 21 73
							 | 
							syl2an2r | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( ( 𝐴  ·  𝐵 ) 𝐸 ( 𝐶  ·  𝐷 )  ↔  ( ( 𝐴  ·  𝐵 )  ∈  𝑋  ∧  ( 𝐶  ·  𝐷 )  ∈  𝑋  ∧  ( ( 𝐶  ·  𝐷 ) ( -g ‘ 𝑅 ) ( 𝐴  ·  𝐵 ) )  ∈  𝑆 ) ) )  | 
						
						
							| 75 | 
							
								33 37 72 74
							 | 
							mpbir3and | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 ) )  →  ( 𝐴  ·  𝐵 ) 𝐸 ( 𝐶  ·  𝐷 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							ex | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  𝐼  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( ( 𝐴 𝐸 𝐶  ∧  𝐵 𝐸 𝐷 )  →  ( 𝐴  ·  𝐵 ) 𝐸 ( 𝐶  ·  𝐷 ) ) )  |