Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Two-sided ideals and quotient rings
2idlelb
Metamath Proof Explorer
Description: Membership in a two-sided ideal. Formerly part of proof for
2idlcpbl . (Contributed by Mario Carneiro , 14-Jun-2015) (Revised by AV , 20-Feb-2025)
Ref
Expression
Hypotheses
2idlel.i
⊢ 𝐼 = ( LIdeal ‘ 𝑅 )
2idlel.o
⊢ 𝑂 = ( oppr ‘ 𝑅 )
2idlel.j
⊢ 𝐽 = ( LIdeal ‘ 𝑂 )
2idlel.t
⊢ 𝑇 = ( 2Ideal ‘ 𝑅 )
Assertion
2idlelb
⊢ ( 𝑈 ∈ 𝑇 ↔ ( 𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽 ) )
Proof
Step
Hyp
Ref
Expression
1
2idlel.i
⊢ 𝐼 = ( LIdeal ‘ 𝑅 )
2
2idlel.o
⊢ 𝑂 = ( oppr ‘ 𝑅 )
3
2idlel.j
⊢ 𝐽 = ( LIdeal ‘ 𝑂 )
4
2idlel.t
⊢ 𝑇 = ( 2Ideal ‘ 𝑅 )
5
1 2 3 4
2idlval
⊢ 𝑇 = ( 𝐼 ∩ 𝐽 )
6
5
elin2
⊢ ( 𝑈 ∈ 𝑇 ↔ ( 𝑈 ∈ 𝐼 ∧ 𝑈 ∈ 𝐽 ) )