Step |
Hyp |
Ref |
Expression |
1 |
|
2idlbas.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
2 |
|
2idlbas.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
3 |
|
2idlbas.b |
⊢ 𝐵 = ( Base ‘ 𝐽 ) |
4 |
1 2 3
|
2idlbas |
⊢ ( 𝜑 → 𝐵 = 𝐼 ) |
5 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
9 |
5 6 7 8
|
2idlelb |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ↔ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
10 |
9
|
simplbi |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
12 |
4 11
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ) |
13 |
9
|
simprbi |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
15 |
4 14
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
16 |
12 15
|
jca |
⊢ ( 𝜑 → ( 𝐵 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝐵 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |