Metamath Proof Explorer


Theorem 2idllidld

Description: A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypothesis 2idllidld.1 ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
Assertion 2idllidld ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 2idllidld.1 ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
2 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
3 eqid ( oppr𝑅 ) = ( oppr𝑅 )
4 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
5 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
6 2 3 4 5 2idlval ( 2Ideal ‘ 𝑅 ) = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr𝑅 ) ) )
7 1 6 eleqtrdi ( 𝜑𝐼 ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
8 7 elin1d ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )