Metamath Proof Explorer


Theorem 2idlss

Description: A two-sided ideal is a subset of the base set. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025) (Proof shortened by AV, 13-Mar-2025)

Ref Expression
Hypotheses 2idlss.b 𝐵 = ( Base ‘ 𝑊 )
2idlss.i 𝐼 = ( 2Ideal ‘ 𝑊 )
Assertion 2idlss ( 𝑈𝐼𝑈𝐵 )

Proof

Step Hyp Ref Expression
1 2idlss.b 𝐵 = ( Base ‘ 𝑊 )
2 2idlss.i 𝐼 = ( 2Ideal ‘ 𝑊 )
3 2 eleq2i ( 𝑈𝐼𝑈 ∈ ( 2Ideal ‘ 𝑊 ) )
4 3 biimpi ( 𝑈𝐼𝑈 ∈ ( 2Ideal ‘ 𝑊 ) )
5 4 2idllidld ( 𝑈𝐼𝑈 ∈ ( LIdeal ‘ 𝑊 ) )
6 eqid ( LIdeal ‘ 𝑊 ) = ( LIdeal ‘ 𝑊 )
7 1 6 lidlss ( 𝑈 ∈ ( LIdeal ‘ 𝑊 ) → 𝑈𝐵 )
8 5 7 syl ( 𝑈𝐼𝑈𝐵 )