| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlval.i |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
| 2 |
|
2idlval.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 3 |
|
2idlval.j |
⊢ 𝐽 = ( LIdeal ‘ 𝑂 ) |
| 4 |
|
2idlval.t |
⊢ 𝑇 = ( 2Ideal ‘ 𝑅 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = 𝐼 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = 𝑂 ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) = ( LIdeal ‘ 𝑂 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) = 𝐽 ) |
| 11 |
6 10
|
ineq12d |
⊢ ( 𝑟 = 𝑅 → ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) ) = ( 𝐼 ∩ 𝐽 ) ) |
| 12 |
|
df-2idl |
⊢ 2Ideal = ( 𝑟 ∈ V ↦ ( ( LIdeal ‘ 𝑟 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑟 ) ) ) ) |
| 13 |
1
|
fvexi |
⊢ 𝐼 ∈ V |
| 14 |
13
|
inex1 |
⊢ ( 𝐼 ∩ 𝐽 ) ∈ V |
| 15 |
11 12 14
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) ) |
| 16 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ∅ ) |
| 17 |
|
inss1 |
⊢ ( 𝐼 ∩ 𝐽 ) ⊆ 𝐼 |
| 18 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( LIdeal ‘ 𝑅 ) = ∅ ) |
| 19 |
1 18
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐼 = ∅ ) |
| 20 |
|
sseq0 |
⊢ ( ( ( 𝐼 ∩ 𝐽 ) ⊆ 𝐼 ∧ 𝐼 = ∅ ) → ( 𝐼 ∩ 𝐽 ) = ∅ ) |
| 21 |
17 19 20
|
sylancr |
⊢ ( ¬ 𝑅 ∈ V → ( 𝐼 ∩ 𝐽 ) = ∅ ) |
| 22 |
16 21
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) ) |
| 23 |
15 22
|
pm2.61i |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 𝐼 ∩ 𝐽 ) |
| 24 |
4 23
|
eqtri |
⊢ 𝑇 = ( 𝐼 ∩ 𝐽 ) |