Step |
Hyp |
Ref |
Expression |
1 |
|
2if2.1 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 = 𝐴 ) |
2 |
|
2if2.2 |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ∧ 𝜃 ) → 𝐷 = 𝐵 ) |
3 |
|
2if2.3 |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜃 ) → 𝐷 = 𝐶 ) |
4 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) = 𝐴 ) |
6 |
1 5
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐷 = if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) ) |
7 |
2
|
3expa |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ 𝜃 ) → 𝐷 = 𝐵 ) |
8 |
|
iftrue |
⊢ ( 𝜃 → if ( 𝜃 , 𝐵 , 𝐶 ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ 𝜃 ) → if ( 𝜃 , 𝐵 , 𝐶 ) = 𝐵 ) |
10 |
7 9
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ 𝜃 ) → 𝐷 = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
11 |
3
|
3expa |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜃 ) → 𝐷 = 𝐶 ) |
12 |
|
iffalse |
⊢ ( ¬ 𝜃 → if ( 𝜃 , 𝐵 , 𝐶 ) = 𝐶 ) |
13 |
12
|
eqcomd |
⊢ ( ¬ 𝜃 → 𝐶 = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜃 ) → 𝐶 = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
15 |
11 14
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∧ ¬ 𝜃 ) → 𝐷 = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
16 |
10 15
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐷 = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
17 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) = if ( 𝜃 , 𝐵 , 𝐶 ) ) |
19 |
16 18
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐷 = if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) ) |
20 |
6 19
|
pm2.61dan |
⊢ ( 𝜑 → 𝐷 = if ( 𝜓 , 𝐴 , if ( 𝜃 , 𝐵 , 𝐶 ) ) ) |