Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2iunin | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iunin2 | ⊢ ∪ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ( 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) | |
| 2 | 1 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ( 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) ) | 
| 3 | 2 | iuneq2i | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) | 
| 4 | iunin1 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) | |
| 5 | 3 4 | eqtri | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∩ ∪ 𝑦 ∈ 𝐵 𝐷 ) |