Metamath Proof Explorer


Theorem 2iunin

Description: Rearrange indexed unions over intersection. (Contributed by NM, 18-Dec-2008)

Ref Expression
Assertion 2iunin 𝑥𝐴 𝑦𝐵 ( 𝐶𝐷 ) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 iunin2 𝑦𝐵 ( 𝐶𝐷 ) = ( 𝐶 𝑦𝐵 𝐷 )
2 1 a1i ( 𝑥𝐴 𝑦𝐵 ( 𝐶𝐷 ) = ( 𝐶 𝑦𝐵 𝐷 ) )
3 2 iuneq2i 𝑥𝐴 𝑦𝐵 ( 𝐶𝐷 ) = 𝑥𝐴 ( 𝐶 𝑦𝐵 𝐷 )
4 iunin1 𝑥𝐴 ( 𝐶 𝑦𝐵 𝐷 ) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )
5 3 4 eqtri 𝑥𝐴 𝑦𝐵 ( 𝐶𝐷 ) = ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 )