Metamath Proof Explorer


Theorem 2lgs2

Description: The Legendre symbol for 2 at 2 is 0 . (Contributed by AV, 20-Jun-2021)

Ref Expression
Assertion 2lgs2 ( 2 /L 2 ) = 0

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 lgs2 ( 2 ∈ ℤ → ( 2 /L 2 ) = if ( 2 ∥ 2 , 0 , if ( ( 2 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) )
3 1 2 ax-mp ( 2 /L 2 ) = if ( 2 ∥ 2 , 0 , if ( ( 2 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) )
4 z2even 2 ∥ 2
5 4 iftruei if ( 2 ∥ 2 , 0 , if ( ( 2 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = 0
6 3 5 eqtri ( 2 /L 2 ) = 0