Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem1b.i |
⊢ 𝐼 = ( 𝐴 ... 𝐵 ) |
2 |
|
2lgslem1b.f |
⊢ 𝐹 = ( 𝑗 ∈ 𝐼 ↦ ( 𝑗 · 2 ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑗 · 2 ) → ( 𝑥 = ( 𝑖 · 2 ) ↔ ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑥 = ( 𝑗 · 2 ) → ( ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ↔ ∃ 𝑖 ∈ 𝐼 ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ) ) |
5 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝐴 ... 𝐵 ) → 𝑗 ∈ ℤ ) |
6 |
5 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝐼 → 𝑗 ∈ ℤ ) |
7 |
|
2z |
⊢ 2 ∈ ℤ |
8 |
7
|
a1i |
⊢ ( 𝑗 ∈ 𝐼 → 2 ∈ ℤ ) |
9 |
6 8
|
zmulcld |
⊢ ( 𝑗 ∈ 𝐼 → ( 𝑗 · 2 ) ∈ ℤ ) |
10 |
|
id |
⊢ ( 𝑗 ∈ 𝐼 → 𝑗 ∈ 𝐼 ) |
11 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 · 2 ) = ( 𝑗 · 2 ) ) |
12 |
11
|
eqeq2d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ↔ ( 𝑗 · 2 ) = ( 𝑗 · 2 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑗 ∈ 𝐼 ∧ 𝑖 = 𝑗 ) → ( ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ↔ ( 𝑗 · 2 ) = ( 𝑗 · 2 ) ) ) |
14 |
|
eqidd |
⊢ ( 𝑗 ∈ 𝐼 → ( 𝑗 · 2 ) = ( 𝑗 · 2 ) ) |
15 |
10 13 14
|
rspcedvd |
⊢ ( 𝑗 ∈ 𝐼 → ∃ 𝑖 ∈ 𝐼 ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ) |
16 |
4 9 15
|
elrabd |
⊢ ( 𝑗 ∈ 𝐼 → ( 𝑗 · 2 ) ∈ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ) |
17 |
2 16
|
fmpti |
⊢ 𝐹 : 𝐼 ⟶ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } |
18 |
|
oveq1 |
⊢ ( 𝑗 = 𝑦 → ( 𝑗 · 2 ) = ( 𝑦 · 2 ) ) |
19 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
20 |
|
ovexd |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑦 · 2 ) ∈ V ) |
21 |
2 18 19 20
|
fvmptd3 |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 2 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑗 = 𝑧 → ( 𝑗 · 2 ) = ( 𝑧 · 2 ) ) |
23 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 𝑧 ∈ 𝐼 ) |
24 |
|
ovexd |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝑧 · 2 ) ∈ V ) |
25 |
2 22 23 24
|
fvmptd3 |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 · 2 ) ) |
26 |
21 25
|
eqeq12d |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 · 2 ) = ( 𝑧 · 2 ) ) ) |
27 |
|
elfzelz |
⊢ ( 𝑦 ∈ ( 𝐴 ... 𝐵 ) → 𝑦 ∈ ℤ ) |
28 |
27 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐼 → 𝑦 ∈ ℤ ) |
29 |
28
|
zcnd |
⊢ ( 𝑦 ∈ 𝐼 → 𝑦 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 𝑦 ∈ ℂ ) |
31 |
|
elfzelz |
⊢ ( 𝑧 ∈ ( 𝐴 ... 𝐵 ) → 𝑧 ∈ ℤ ) |
32 |
31 1
|
eleq2s |
⊢ ( 𝑧 ∈ 𝐼 → 𝑧 ∈ ℤ ) |
33 |
32
|
zcnd |
⊢ ( 𝑧 ∈ 𝐼 → 𝑧 ∈ ℂ ) |
34 |
33
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 𝑧 ∈ ℂ ) |
35 |
|
2cnd |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 2 ∈ ℂ ) |
36 |
|
2ne0 |
⊢ 2 ≠ 0 |
37 |
36
|
a1i |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → 2 ≠ 0 ) |
38 |
30 34 35 37
|
mulcan2d |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑦 · 2 ) = ( 𝑧 · 2 ) ↔ 𝑦 = 𝑧 ) ) |
39 |
38
|
biimpd |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑦 · 2 ) = ( 𝑧 · 2 ) → 𝑦 = 𝑧 ) ) |
40 |
26 39
|
sylbid |
⊢ ( ( 𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
41 |
40
|
rgen2 |
⊢ ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) |
42 |
|
dff13 |
⊢ ( 𝐹 : 𝐼 –1-1→ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ↔ ( 𝐹 : 𝐼 ⟶ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ∧ ∀ 𝑦 ∈ 𝐼 ∀ 𝑧 ∈ 𝐼 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
43 |
17 41 42
|
mpbir2an |
⊢ 𝐹 : 𝐼 –1-1→ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } |
44 |
|
oveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 · 2 ) = ( 𝑖 · 2 ) ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑥 = ( 𝑗 · 2 ) ↔ 𝑥 = ( 𝑖 · 2 ) ) ) |
46 |
45
|
cbvrexvw |
⊢ ( ∃ 𝑗 ∈ 𝐼 𝑥 = ( 𝑗 · 2 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ) |
47 |
|
elfzelz |
⊢ ( 𝑖 ∈ ( 𝐴 ... 𝐵 ) → 𝑖 ∈ ℤ ) |
48 |
7
|
a1i |
⊢ ( 𝑖 ∈ ( 𝐴 ... 𝐵 ) → 2 ∈ ℤ ) |
49 |
47 48
|
zmulcld |
⊢ ( 𝑖 ∈ ( 𝐴 ... 𝐵 ) → ( 𝑖 · 2 ) ∈ ℤ ) |
50 |
49 1
|
eleq2s |
⊢ ( 𝑖 ∈ 𝐼 → ( 𝑖 · 2 ) ∈ ℤ ) |
51 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑖 · 2 ) → ( 𝑥 ∈ ℤ ↔ ( 𝑖 · 2 ) ∈ ℤ ) ) |
52 |
50 51
|
syl5ibrcom |
⊢ ( 𝑖 ∈ 𝐼 → ( 𝑥 = ( 𝑖 · 2 ) → 𝑥 ∈ ℤ ) ) |
53 |
52
|
rexlimiv |
⊢ ( ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) → 𝑥 ∈ ℤ ) |
54 |
53
|
pm4.71ri |
⊢ ( ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ) ) |
55 |
46 54
|
bitri |
⊢ ( ∃ 𝑗 ∈ 𝐼 𝑥 = ( 𝑗 · 2 ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ) ) |
56 |
55
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑗 ∈ 𝐼 𝑥 = ( 𝑗 · 2 ) } = { 𝑥 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ) } |
57 |
2
|
rnmpt |
⊢ ran 𝐹 = { 𝑥 ∣ ∃ 𝑗 ∈ 𝐼 𝑥 = ( 𝑗 · 2 ) } |
58 |
|
df-rab |
⊢ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } = { 𝑥 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) ) } |
59 |
56 57 58
|
3eqtr4i |
⊢ ran 𝐹 = { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } |
60 |
|
dff1o5 |
⊢ ( 𝐹 : 𝐼 –1-1-onto→ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ↔ ( 𝐹 : 𝐼 –1-1→ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ∧ ran 𝐹 = { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } ) ) |
61 |
43 59 60
|
mpbir2an |
⊢ 𝐹 : 𝐼 –1-1-onto→ { 𝑥 ∈ ℤ ∣ ∃ 𝑖 ∈ 𝐼 𝑥 = ( 𝑖 · 2 ) } |