Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
2 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
3 |
|
oddnn02np1 |
⊢ ( 𝑃 ∈ ℕ0 → ( ¬ 2 ∥ 𝑃 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) ) |
4 |
1 2 3
|
3syl |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 2 ∥ 𝑃 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) ) |
5 |
|
iftrue |
⊢ ( 2 ∥ 𝑛 → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) = ( 𝑛 / 2 ) ) |
6 |
5
|
adantr |
⊢ ( ( 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) = ( 𝑛 / 2 ) ) |
7 |
|
2nn |
⊢ 2 ∈ ℕ |
8 |
|
nn0ledivnn |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 2 ∈ ℕ ) → ( 𝑛 / 2 ) ≤ 𝑛 ) |
9 |
7 8
|
mpan2 |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 / 2 ) ≤ 𝑛 ) |
10 |
9
|
adantl |
⊢ ( ( 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 / 2 ) ≤ 𝑛 ) |
11 |
6 10
|
eqbrtrd |
⊢ ( ( 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ≤ 𝑛 ) |
12 |
|
iffalse |
⊢ ( ¬ 2 ∥ 𝑛 → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) = ( ( 𝑛 − 1 ) / 2 ) ) |
13 |
12
|
adantr |
⊢ ( ( ¬ 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) = ( ( 𝑛 − 1 ) / 2 ) ) |
14 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
15 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
16 |
15
|
rehalfcld |
⊢ ( 𝑛 ∈ ℝ → ( ( 𝑛 − 1 ) / 2 ) ∈ ℝ ) |
17 |
14 16
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 − 1 ) / 2 ) ∈ ℝ ) |
18 |
14
|
rehalfcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 / 2 ) ∈ ℝ ) |
19 |
14
|
lem1d |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 − 1 ) ≤ 𝑛 ) |
20 |
14 15
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 − 1 ) ∈ ℝ ) |
21 |
|
2re |
⊢ 2 ∈ ℝ |
22 |
|
2pos |
⊢ 0 < 2 |
23 |
21 22
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
24 |
23
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
25 |
|
lediv1 |
⊢ ( ( ( 𝑛 − 1 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑛 − 1 ) ≤ 𝑛 ↔ ( ( 𝑛 − 1 ) / 2 ) ≤ ( 𝑛 / 2 ) ) ) |
26 |
20 14 24 25
|
syl3anc |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 − 1 ) ≤ 𝑛 ↔ ( ( 𝑛 − 1 ) / 2 ) ≤ ( 𝑛 / 2 ) ) ) |
27 |
19 26
|
mpbid |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 − 1 ) / 2 ) ≤ ( 𝑛 / 2 ) ) |
28 |
17 18 14 27 9
|
letrd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑛 − 1 ) / 2 ) ≤ 𝑛 ) |
29 |
28
|
adantl |
⊢ ( ( ¬ 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 − 1 ) / 2 ) ≤ 𝑛 ) |
30 |
13 29
|
eqbrtrd |
⊢ ( ( ¬ 2 ∥ 𝑛 ∧ 𝑛 ∈ ℕ0 ) → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ≤ 𝑛 ) |
31 |
11 30
|
pm2.61ian |
⊢ ( 𝑛 ∈ ℕ0 → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ≤ 𝑛 ) |
32 |
31
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ≤ 𝑛 ) |
33 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
34 |
33
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
35 |
|
eqcom |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ↔ 𝑃 = ( ( 2 · 𝑛 ) + 1 ) ) |
36 |
35
|
biimpi |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑃 → 𝑃 = ( ( 2 · 𝑛 ) + 1 ) ) |
37 |
|
flodddiv4 |
⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑃 = ( ( 2 · 𝑛 ) + 1 ) ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) = if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ) |
38 |
34 36 37
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) = if ( 2 ∥ 𝑛 , ( 𝑛 / 2 ) , ( ( 𝑛 − 1 ) / 2 ) ) ) |
39 |
|
oveq1 |
⊢ ( 𝑃 = ( ( 2 · 𝑛 ) + 1 ) → ( 𝑃 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) |
40 |
39
|
eqcoms |
⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑃 → ( 𝑃 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( 𝑃 − 1 ) = ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) ) |
42 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
43 |
42
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℕ0 ) |
44 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
45 |
43 44
|
nn0mulcld |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
46 |
45
|
nn0cnd |
⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℂ ) |
47 |
|
pncan1 |
⊢ ( ( 2 · 𝑛 ) ∈ ℂ → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
48 |
46 47
|
syl |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
49 |
48
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ( ( 2 · 𝑛 ) + 1 ) − 1 ) = ( 2 · 𝑛 ) ) |
50 |
41 49
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( 𝑃 − 1 ) = ( 2 · 𝑛 ) ) |
51 |
50
|
oveq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ( 𝑃 − 1 ) / 2 ) = ( ( 2 · 𝑛 ) / 2 ) ) |
52 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
53 |
|
2cnd |
⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℂ ) |
54 |
|
2ne0 |
⊢ 2 ≠ 0 |
55 |
54
|
a1i |
⊢ ( 𝑛 ∈ ℕ0 → 2 ≠ 0 ) |
56 |
52 53 55
|
divcan3d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
57 |
56
|
ad2antlr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ( 2 · 𝑛 ) / 2 ) = 𝑛 ) |
58 |
51 57
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ( 𝑃 − 1 ) / 2 ) = 𝑛 ) |
59 |
32 38 58
|
3brtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℕ0 ) ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑃 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |
60 |
59
|
rexlimdva2 |
⊢ ( 𝑃 ∈ ℙ → ( ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑃 → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
61 |
4 60
|
sylbid |
⊢ ( 𝑃 ∈ ℙ → ( ¬ 2 ∥ 𝑃 → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) ) |
62 |
61
|
imp |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ≤ ( ( 𝑃 − 1 ) / 2 ) ) |