| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2lgslem2.n | ⊢ 𝑁  =  ( ( ( 𝑃  −  1 )  /  2 )  −  ( ⌊ ‘ ( 𝑃  /  4 ) ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | elsng | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  { 2 }  ↔  𝑃  =  2 ) ) | 
						
							| 4 |  | z2even | ⊢ 2  ∥  2 | 
						
							| 5 |  | breq2 | ⊢ ( 𝑃  =  2  →  ( 2  ∥  𝑃  ↔  2  ∥  2 ) ) | 
						
							| 6 | 4 5 | mpbiri | ⊢ ( 𝑃  =  2  →  2  ∥  𝑃 ) | 
						
							| 7 | 3 6 | biimtrdi | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  { 2 }  →  2  ∥  𝑃 ) ) | 
						
							| 8 | 7 | con3dimp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  ¬  𝑃  ∈  { 2 } ) | 
						
							| 9 | 2 8 | eldifd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 10 |  | oddprm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 11 | 10 | nnzd | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 13 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 14 | 13 | zred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 15 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 16 | 15 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  4  ∈  ℝ ) | 
						
							| 17 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑃  ∈  ℙ  →  4  ≠  0 ) | 
						
							| 19 | 14 16 18 | redivcld | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 20 | 19 | flcld | ⊢ ( 𝑃  ∈  ℙ  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℤ ) | 
						
							| 22 | 12 21 | zsubcld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  ( ( ( 𝑃  −  1 )  /  2 )  −  ( ⌊ ‘ ( 𝑃  /  4 ) ) )  ∈  ℤ ) | 
						
							| 23 | 1 22 | eqeltrid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  2  ∥  𝑃 )  →  𝑁  ∈  ℤ ) |