Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
2 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → 𝑃 ∈ ℙ ) |
3 |
|
elsng |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ { 2 } ↔ 𝑃 = 2 ) ) |
4 |
|
z2even |
⊢ 2 ∥ 2 |
5 |
|
breq2 |
⊢ ( 𝑃 = 2 → ( 2 ∥ 𝑃 ↔ 2 ∥ 2 ) ) |
6 |
4 5
|
mpbiri |
⊢ ( 𝑃 = 2 → 2 ∥ 𝑃 ) |
7 |
3 6
|
syl6bi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ { 2 } → 2 ∥ 𝑃 ) ) |
8 |
7
|
con3dimp |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → ¬ 𝑃 ∈ { 2 } ) |
9 |
2 8
|
eldifd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
10 |
|
oddprm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℕ ) |
11 |
10
|
nnzd |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
12 |
9 11
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
13 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
14 |
13
|
zred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
15 |
|
4re |
⊢ 4 ∈ ℝ |
16 |
15
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 4 ∈ ℝ ) |
17 |
|
4ne0 |
⊢ 4 ≠ 0 |
18 |
17
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 4 ≠ 0 ) |
19 |
14 16 18
|
redivcld |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 / 4 ) ∈ ℝ ) |
20 |
19
|
flcld |
⊢ ( 𝑃 ∈ ℙ → ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℤ ) |
21 |
20
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) ∈ ℤ ) |
22 |
12 21
|
zsubcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) ∈ ℤ ) |
23 |
1 22
|
eqeltrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃 ) → 𝑁 ∈ ℤ ) |