Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
2 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
3 |
|
lgsdir2lem3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑃 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
4 |
2 3
|
sylan |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑃 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ) |
5 |
|
elun |
⊢ ( ( 𝑃 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) ↔ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝑃 mod 8 ) ∈ { 3 , 5 } ) ) |
6 |
|
ovex |
⊢ ( 𝑃 mod 8 ) ∈ V |
7 |
6
|
elpr |
⊢ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ↔ ( ( 𝑃 mod 8 ) = 1 ∨ ( 𝑃 mod 8 ) = 7 ) ) |
8 |
1
|
2lgslem3a1 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 1 ) → ( 𝑁 mod 2 ) = 0 ) |
9 |
8
|
a1d |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 1 ) → ( ¬ 2 ∥ 𝑃 → ( 𝑁 mod 2 ) = 0 ) ) |
10 |
9
|
expcom |
⊢ ( ( 𝑃 mod 8 ) = 1 → ( 𝑃 ∈ ℕ → ( ¬ 2 ∥ 𝑃 → ( 𝑁 mod 2 ) = 0 ) ) ) |
11 |
10
|
impd |
⊢ ( ( 𝑃 mod 8 ) = 1 → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = 0 ) ) |
12 |
1
|
2lgslem3d1 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 7 ) → ( 𝑁 mod 2 ) = 0 ) |
13 |
12
|
a1d |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 7 ) → ( ¬ 2 ∥ 𝑃 → ( 𝑁 mod 2 ) = 0 ) ) |
14 |
13
|
expcom |
⊢ ( ( 𝑃 mod 8 ) = 7 → ( 𝑃 ∈ ℕ → ( ¬ 2 ∥ 𝑃 → ( 𝑁 mod 2 ) = 0 ) ) ) |
15 |
14
|
impd |
⊢ ( ( 𝑃 mod 8 ) = 7 → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = 0 ) ) |
16 |
11 15
|
jaoi |
⊢ ( ( ( 𝑃 mod 8 ) = 1 ∨ ( 𝑃 mod 8 ) = 7 ) → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = 0 ) ) |
17 |
7 16
|
sylbi |
⊢ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = 0 ) ) |
18 |
17
|
imp |
⊢ ( ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) → ( 𝑁 mod 2 ) = 0 ) |
19 |
|
iftrue |
⊢ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } → if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) = 0 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) → if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) = 0 ) |
21 |
18 20
|
eqtr4d |
⊢ ( ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) |
22 |
21
|
ex |
⊢ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
23 |
6
|
elpr |
⊢ ( ( 𝑃 mod 8 ) ∈ { 3 , 5 } ↔ ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ) |
24 |
1
|
2lgslem3b1 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 3 ) → ( 𝑁 mod 2 ) = 1 ) |
25 |
24
|
expcom |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( 𝑃 ∈ ℕ → ( 𝑁 mod 2 ) = 1 ) ) |
26 |
1
|
2lgslem3c1 |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 5 ) → ( 𝑁 mod 2 ) = 1 ) |
27 |
26
|
expcom |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( 𝑃 ∈ ℕ → ( 𝑁 mod 2 ) = 1 ) ) |
28 |
25 27
|
jaoi |
⊢ ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) → ( 𝑃 ∈ ℕ → ( 𝑁 mod 2 ) = 1 ) ) |
29 |
28
|
imp |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → ( 𝑁 mod 2 ) = 1 ) |
30 |
|
1re |
⊢ 1 ∈ ℝ |
31 |
|
1lt3 |
⊢ 1 < 3 |
32 |
30 31
|
ltneii |
⊢ 1 ≠ 3 |
33 |
32
|
nesymi |
⊢ ¬ 3 = 1 |
34 |
|
3re |
⊢ 3 ∈ ℝ |
35 |
|
3lt7 |
⊢ 3 < 7 |
36 |
34 35
|
ltneii |
⊢ 3 ≠ 7 |
37 |
36
|
neii |
⊢ ¬ 3 = 7 |
38 |
33 37
|
pm3.2i |
⊢ ( ¬ 3 = 1 ∧ ¬ 3 = 7 ) |
39 |
|
eqeq1 |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ( 𝑃 mod 8 ) = 1 ↔ 3 = 1 ) ) |
40 |
39
|
notbid |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ¬ ( 𝑃 mod 8 ) = 1 ↔ ¬ 3 = 1 ) ) |
41 |
|
eqeq1 |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ( 𝑃 mod 8 ) = 7 ↔ 3 = 7 ) ) |
42 |
41
|
notbid |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ¬ ( 𝑃 mod 8 ) = 7 ↔ ¬ 3 = 7 ) ) |
43 |
40 42
|
anbi12d |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ↔ ( ¬ 3 = 1 ∧ ¬ 3 = 7 ) ) ) |
44 |
38 43
|
mpbiri |
⊢ ( ( 𝑃 mod 8 ) = 3 → ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
45 |
|
1lt5 |
⊢ 1 < 5 |
46 |
30 45
|
ltneii |
⊢ 1 ≠ 5 |
47 |
46
|
nesymi |
⊢ ¬ 5 = 1 |
48 |
|
5re |
⊢ 5 ∈ ℝ |
49 |
|
5lt7 |
⊢ 5 < 7 |
50 |
48 49
|
ltneii |
⊢ 5 ≠ 7 |
51 |
50
|
neii |
⊢ ¬ 5 = 7 |
52 |
47 51
|
pm3.2i |
⊢ ( ¬ 5 = 1 ∧ ¬ 5 = 7 ) |
53 |
|
eqeq1 |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ( 𝑃 mod 8 ) = 1 ↔ 5 = 1 ) ) |
54 |
53
|
notbid |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ¬ ( 𝑃 mod 8 ) = 1 ↔ ¬ 5 = 1 ) ) |
55 |
|
eqeq1 |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ( 𝑃 mod 8 ) = 7 ↔ 5 = 7 ) ) |
56 |
55
|
notbid |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ¬ ( 𝑃 mod 8 ) = 7 ↔ ¬ 5 = 7 ) ) |
57 |
54 56
|
anbi12d |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ↔ ( ¬ 5 = 1 ∧ ¬ 5 = 7 ) ) ) |
58 |
52 57
|
mpbiri |
⊢ ( ( 𝑃 mod 8 ) = 5 → ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
59 |
44 58
|
jaoi |
⊢ ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) → ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
60 |
59
|
adantr |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
61 |
|
ioran |
⊢ ( ¬ ( ( 𝑃 mod 8 ) = 1 ∨ ( 𝑃 mod 8 ) = 7 ) ↔ ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
62 |
61 7
|
xchnxbir |
⊢ ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ↔ ( ¬ ( 𝑃 mod 8 ) = 1 ∧ ¬ ( 𝑃 mod 8 ) = 7 ) ) |
63 |
60 62
|
sylibr |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) |
64 |
63
|
iffalsed |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) = 1 ) |
65 |
29 64
|
eqtr4d |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) |
66 |
65
|
a1d |
⊢ ( ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) ∧ 𝑃 ∈ ℕ ) → ( ¬ 2 ∥ 𝑃 → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
67 |
66
|
expimpd |
⊢ ( ( ( 𝑃 mod 8 ) = 3 ∨ ( 𝑃 mod 8 ) = 5 ) → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
68 |
23 67
|
sylbi |
⊢ ( ( 𝑃 mod 8 ) ∈ { 3 , 5 } → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
69 |
22 68
|
jaoi |
⊢ ( ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∨ ( 𝑃 mod 8 ) ∈ { 3 , 5 } ) → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
70 |
5 69
|
sylbi |
⊢ ( ( 𝑃 mod 8 ) ∈ ( { 1 , 7 } ∪ { 3 , 5 } ) → ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) ) |
71 |
4 70
|
mpcom |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑁 mod 2 ) = if ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } , 0 , 1 ) ) |