Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 1 ) → ( 𝑃 − 1 ) = ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 1 ) → ( ( 𝑃 − 1 ) / 2 ) = ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) ) |
4 |
|
fvoveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 1 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) = ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 1 ) → ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) = ( ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) ) ) |
6 |
1 5
|
syl5eq |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 1 ) → 𝑁 = ( ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) ) ) |
7 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℕ0 ) |
9 |
|
id |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) |
10 |
8 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℂ ) |
12 |
|
pncan1 |
⊢ ( ( 8 · 𝐾 ) ∈ ℂ → ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) = ( 8 · 𝐾 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) = ( 8 · 𝐾 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) = ( ( 8 · 𝐾 ) / 2 ) ) |
15 |
|
4cn |
⊢ 4 ∈ ℂ |
16 |
|
2cn |
⊢ 2 ∈ ℂ |
17 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
18 |
15 16 17
|
mulcomli |
⊢ ( 2 · 4 ) = 8 |
19 |
18
|
eqcomi |
⊢ 8 = ( 2 · 4 ) |
20 |
19
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 = ( 2 · 4 ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( ( 2 · 4 ) · 𝐾 ) ) |
22 |
16
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℂ ) |
23 |
15
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℂ ) |
24 |
|
nn0cn |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) |
25 |
22 23 24
|
mulassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 4 ) · 𝐾 ) = ( 2 · ( 4 · 𝐾 ) ) ) |
26 |
21 25
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( 2 · ( 4 · 𝐾 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 2 ) = ( ( 2 · ( 4 · 𝐾 ) ) / 2 ) ) |
28 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
29 |
28
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ0 ) |
30 |
29 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℕ0 ) |
31 |
30
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℂ ) |
32 |
|
2ne0 |
⊢ 2 ≠ 0 |
33 |
32
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ≠ 0 ) |
34 |
31 22 33
|
divcan3d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · ( 4 · 𝐾 ) ) / 2 ) = ( 4 · 𝐾 ) ) |
35 |
14 27 34
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) = ( 4 · 𝐾 ) ) |
36 |
|
1cnd |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℂ ) |
37 |
|
4ne0 |
⊢ 4 ≠ 0 |
38 |
15 37
|
pm3.2i |
⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
39 |
38
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) |
40 |
|
divdir |
⊢ ( ( ( 8 · 𝐾 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 1 / 4 ) ) ) |
41 |
11 36 39 40
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 1 / 4 ) ) ) |
42 |
|
8cn |
⊢ 8 ∈ ℂ |
43 |
42
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℂ ) |
44 |
|
div23 |
⊢ ( ( 8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
45 |
43 24 39 44
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
46 |
17
|
eqcomi |
⊢ 8 = ( 4 · 2 ) |
47 |
46
|
oveq1i |
⊢ ( 8 / 4 ) = ( ( 4 · 2 ) / 4 ) |
48 |
16 15 37
|
divcan3i |
⊢ ( ( 4 · 2 ) / 4 ) = 2 |
49 |
47 48
|
eqtri |
⊢ ( 8 / 4 ) = 2 |
50 |
49
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 / 4 ) = 2 ) |
51 |
50
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 / 4 ) · 𝐾 ) = ( 2 · 𝐾 ) ) |
52 |
45 51
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( 2 · 𝐾 ) ) |
53 |
52
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) / 4 ) + ( 1 / 4 ) ) = ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) |
54 |
41 53
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) = ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) = ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) ) |
56 |
|
1lt4 |
⊢ 1 < 4 |
57 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
58 |
57
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℕ0 ) |
59 |
58 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℕ0 ) |
60 |
59
|
nn0zd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℤ ) |
61 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
62 |
61
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℕ0 ) |
63 |
|
4nn |
⊢ 4 ∈ ℕ |
64 |
63
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ ) |
65 |
|
adddivflid |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℤ ∧ 1 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 1 < 4 ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) = ( 2 · 𝐾 ) ) ) |
66 |
60 62 64 65
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( 1 < 4 ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) = ( 2 · 𝐾 ) ) ) |
67 |
56 66
|
mpbii |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 1 / 4 ) ) ) = ( 2 · 𝐾 ) ) |
68 |
55 67
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) = ( 2 · 𝐾 ) ) |
69 |
35 68
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) ) = ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) ) |
70 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
71 |
70
|
eqcomi |
⊢ 4 = ( 2 · 2 ) |
72 |
71
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 = ( 2 · 2 ) ) |
73 |
72
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( ( 2 · 2 ) · 𝐾 ) ) |
74 |
22 22 24
|
mulassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 2 ) · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
75 |
73 74
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
76 |
75
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) = ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) ) |
77 |
59
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℂ ) |
78 |
|
2txmxeqx |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
79 |
77 78
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
80 |
69 76 79
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 1 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 1 ) / 4 ) ) ) = ( 2 · 𝐾 ) ) |
81 |
6 80
|
sylan9eqr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑃 = ( ( 8 · 𝐾 ) + 1 ) ) → 𝑁 = ( 2 · 𝐾 ) ) |