Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
2 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
3 |
|
8nn |
⊢ 8 ∈ ℕ |
4 |
|
nnrp |
⊢ ( 8 ∈ ℕ → 8 ∈ ℝ+ ) |
5 |
3 4
|
ax-mp |
⊢ 8 ∈ ℝ+ |
6 |
|
modmuladdnn0 |
⊢ ( ( 𝑃 ∈ ℕ0 ∧ 8 ∈ ℝ+ ) → ( ( 𝑃 mod 8 ) = 3 → ∃ 𝑘 ∈ ℕ0 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ) ) |
7 |
2 5 6
|
sylancl |
⊢ ( 𝑃 ∈ ℕ → ( ( 𝑃 mod 8 ) = 3 → ∃ 𝑘 ∈ ℕ0 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
9 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
10 |
|
8cn |
⊢ 8 ∈ ℂ |
11 |
10
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 8 ∈ ℂ ) |
12 |
9 11
|
mulcomd |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 · 8 ) = ( 8 · 𝑘 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 · 8 ) = ( 8 · 𝑘 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 · 8 ) + 3 ) = ( ( 8 · 𝑘 ) + 3 ) ) |
15 |
14
|
eqeq2d |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ↔ 𝑃 = ( ( 8 · 𝑘 ) + 3 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ) → 𝑃 = ( ( 8 · 𝑘 ) + 3 ) ) |
17 |
1
|
2lgslem3b |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑃 = ( ( 8 · 𝑘 ) + 3 ) ) → 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) |
18 |
8 16 17
|
syl2an2r |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ) → 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑁 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝑁 mod 2 ) = ( ( ( 2 · 𝑘 ) + 1 ) mod 2 ) ) |
20 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
21 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
22 |
|
2tp1odd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( 𝑘 ∈ ℕ0 → ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) |
24 |
|
2z |
⊢ 2 ∈ ℤ |
25 |
24
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℤ ) |
26 |
25 20
|
zmulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℤ ) |
27 |
26
|
peano2zd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ ) |
28 |
|
mod2eq1n2dvds |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℤ → ( ( ( ( 2 · 𝑘 ) + 1 ) mod 2 ) = 1 ↔ ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
29 |
27 28
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 2 · 𝑘 ) + 1 ) mod 2 ) = 1 ↔ ¬ 2 ∥ ( ( 2 · 𝑘 ) + 1 ) ) ) |
30 |
23 29
|
mpbird |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) mod 2 ) = 1 ) |
31 |
19 30
|
sylan9eqr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 = ( ( 2 · 𝑘 ) + 1 ) ) → ( 𝑁 mod 2 ) = 1 ) |
32 |
8 18 31
|
syl2an2r |
⊢ ( ( ( 𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑘 · 8 ) + 3 ) ) → ( 𝑁 mod 2 ) = 1 ) |
33 |
32
|
rexlimdva2 |
⊢ ( 𝑃 ∈ ℕ → ( ∃ 𝑘 ∈ ℕ0 𝑃 = ( ( 𝑘 · 8 ) + 3 ) → ( 𝑁 mod 2 ) = 1 ) ) |
34 |
7 33
|
syld |
⊢ ( 𝑃 ∈ ℕ → ( ( 𝑃 mod 8 ) = 3 → ( 𝑁 mod 2 ) = 1 ) ) |
35 |
34
|
imp |
⊢ ( ( 𝑃 ∈ ℕ ∧ ( 𝑃 mod 8 ) = 3 ) → ( 𝑁 mod 2 ) = 1 ) |