Step |
Hyp |
Ref |
Expression |
1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
2 |
|
oveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 7 ) → ( 𝑃 − 1 ) = ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) ) |
3 |
2
|
oveq1d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 7 ) → ( ( 𝑃 − 1 ) / 2 ) = ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) ) |
4 |
|
fvoveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 7 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) = ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) ) |
5 |
3 4
|
oveq12d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 7 ) → ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) = ( ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) ) ) |
6 |
1 5
|
eqtrid |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 7 ) → 𝑁 = ( ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) ) ) |
7 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℕ0 ) |
9 |
|
id |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) |
10 |
8 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℕ0 ) |
11 |
10
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℂ ) |
12 |
|
7cn |
⊢ 7 ∈ ℂ |
13 |
12
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 7 ∈ ℂ ) |
14 |
|
1cnd |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℂ ) |
15 |
11 13 14
|
addsubassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) = ( ( 8 · 𝐾 ) + ( 7 − 1 ) ) ) |
16 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
17 |
16
|
eqcomi |
⊢ 8 = ( 4 · 2 ) |
18 |
17
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 = ( 4 · 2 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( ( 4 · 2 ) · 𝐾 ) ) |
20 |
|
4cn |
⊢ 4 ∈ ℂ |
21 |
20
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℂ ) |
22 |
|
2cn |
⊢ 2 ∈ ℂ |
23 |
22
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℂ ) |
24 |
|
nn0cn |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) |
25 |
21 23 24
|
mul32d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 2 ) · 𝐾 ) = ( ( 4 · 𝐾 ) · 2 ) ) |
26 |
19 25
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( ( 4 · 𝐾 ) · 2 ) ) |
27 |
|
7m1e6 |
⊢ ( 7 − 1 ) = 6 |
28 |
27
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 7 − 1 ) = 6 ) |
29 |
26 28
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) + ( 7 − 1 ) ) = ( ( ( 4 · 𝐾 ) · 2 ) + 6 ) ) |
30 |
15 29
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) = ( ( ( 4 · 𝐾 ) · 2 ) + 6 ) ) |
31 |
30
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) + 6 ) / 2 ) ) |
32 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
33 |
32
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ0 ) |
34 |
33 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℕ0 ) |
35 |
34
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℂ ) |
36 |
35 23
|
mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) · 2 ) ∈ ℂ ) |
37 |
|
6cn |
⊢ 6 ∈ ℂ |
38 |
37
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 6 ∈ ℂ ) |
39 |
|
2rp |
⊢ 2 ∈ ℝ+ |
40 |
39
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℝ+ ) |
41 |
40
|
rpcnne0d |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
42 |
|
divdir |
⊢ ( ( ( ( 4 · 𝐾 ) · 2 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( 4 · 𝐾 ) · 2 ) + 6 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 6 / 2 ) ) ) |
43 |
36 38 41 42
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 4 · 𝐾 ) · 2 ) + 6 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 6 / 2 ) ) ) |
44 |
|
2ne0 |
⊢ 2 ≠ 0 |
45 |
44
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ≠ 0 ) |
46 |
35 23 45
|
divcan4d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) = ( 4 · 𝐾 ) ) |
47 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
48 |
47
|
eqcomi |
⊢ 6 = ( 3 · 2 ) |
49 |
48
|
oveq1i |
⊢ ( 6 / 2 ) = ( ( 3 · 2 ) / 2 ) |
50 |
|
3cn |
⊢ 3 ∈ ℂ |
51 |
50 22 44
|
divcan4i |
⊢ ( ( 3 · 2 ) / 2 ) = 3 |
52 |
49 51
|
eqtri |
⊢ ( 6 / 2 ) = 3 |
53 |
52
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 6 / 2 ) = 3 ) |
54 |
46 53
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 6 / 2 ) ) = ( ( 4 · 𝐾 ) + 3 ) ) |
55 |
31 43 54
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) = ( ( 4 · 𝐾 ) + 3 ) ) |
56 |
|
4ne0 |
⊢ 4 ≠ 0 |
57 |
20 56
|
pm3.2i |
⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
58 |
57
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) |
59 |
|
divdir |
⊢ ( ( ( 8 · 𝐾 ) ∈ ℂ ∧ 7 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 7 / 4 ) ) ) |
60 |
11 13 58 59
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 7 / 4 ) ) ) |
61 |
|
8cn |
⊢ 8 ∈ ℂ |
62 |
61
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℂ ) |
63 |
|
div23 |
⊢ ( ( 8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
64 |
62 24 58 63
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
65 |
17
|
oveq1i |
⊢ ( 8 / 4 ) = ( ( 4 · 2 ) / 4 ) |
66 |
22 20 56
|
divcan3i |
⊢ ( ( 4 · 2 ) / 4 ) = 2 |
67 |
65 66
|
eqtri |
⊢ ( 8 / 4 ) = 2 |
68 |
67
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 / 4 ) = 2 ) |
69 |
68
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 / 4 ) · 𝐾 ) = ( 2 · 𝐾 ) ) |
70 |
64 69
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( 2 · 𝐾 ) ) |
71 |
70
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) / 4 ) + ( 7 / 4 ) ) = ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) |
72 |
60 71
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) = ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) = ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) ) |
74 |
|
3lt4 |
⊢ 3 < 4 |
75 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
76 |
75
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℕ0 ) |
77 |
76 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℕ0 ) |
78 |
77
|
nn0zd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℤ ) |
79 |
78
|
peano2zd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 𝐾 ) + 1 ) ∈ ℤ ) |
80 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
81 |
80
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 3 ∈ ℕ0 ) |
82 |
|
4nn |
⊢ 4 ∈ ℕ |
83 |
82
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ ) |
84 |
|
adddivflid |
⊢ ( ( ( ( 2 · 𝐾 ) + 1 ) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 3 < 4 ↔ ( ⌊ ‘ ( ( ( 2 · 𝐾 ) + 1 ) + ( 3 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) ) |
85 |
79 81 83 84
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 < 4 ↔ ( ⌊ ‘ ( ( ( 2 · 𝐾 ) + 1 ) + ( 3 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) ) |
86 |
23 24
|
mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℂ ) |
87 |
50
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 3 ∈ ℂ ) |
88 |
56
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ≠ 0 ) |
89 |
87 21 88
|
divcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 / 4 ) ∈ ℂ ) |
90 |
86 14 89
|
addassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 2 · 𝐾 ) + 1 ) + ( 3 / 4 ) ) = ( ( 2 · 𝐾 ) + ( 1 + ( 3 / 4 ) ) ) ) |
91 |
|
4p3e7 |
⊢ ( 4 + 3 ) = 7 |
92 |
91
|
eqcomi |
⊢ 7 = ( 4 + 3 ) |
93 |
92
|
oveq1i |
⊢ ( 7 / 4 ) = ( ( 4 + 3 ) / 4 ) |
94 |
20 50 20 56
|
divdiri |
⊢ ( ( 4 + 3 ) / 4 ) = ( ( 4 / 4 ) + ( 3 / 4 ) ) |
95 |
20 56
|
dividi |
⊢ ( 4 / 4 ) = 1 |
96 |
95
|
oveq1i |
⊢ ( ( 4 / 4 ) + ( 3 / 4 ) ) = ( 1 + ( 3 / 4 ) ) |
97 |
93 94 96
|
3eqtri |
⊢ ( 7 / 4 ) = ( 1 + ( 3 / 4 ) ) |
98 |
97
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 7 / 4 ) = ( 1 + ( 3 / 4 ) ) ) |
99 |
98
|
eqcomd |
⊢ ( 𝐾 ∈ ℕ0 → ( 1 + ( 3 / 4 ) ) = ( 7 / 4 ) ) |
100 |
99
|
oveq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 𝐾 ) + ( 1 + ( 3 / 4 ) ) ) = ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) |
101 |
90 100
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 2 · 𝐾 ) + 1 ) + ( 3 / 4 ) ) = ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) |
102 |
101
|
fveqeq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ⌊ ‘ ( ( ( 2 · 𝐾 ) + 1 ) + ( 3 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) ) |
103 |
85 102
|
bitrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 < 4 ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) ) |
104 |
74 103
|
mpbii |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 7 / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) |
105 |
73 104
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) = ( ( 2 · 𝐾 ) + 1 ) ) |
106 |
55 105
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) ) = ( ( ( 4 · 𝐾 ) + 3 ) − ( ( 2 · 𝐾 ) + 1 ) ) ) |
107 |
77
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℂ ) |
108 |
35 87 107 14
|
addsub4d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) + 3 ) − ( ( 2 · 𝐾 ) + 1 ) ) = ( ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) + ( 3 − 1 ) ) ) |
109 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
110 |
109
|
eqcomi |
⊢ 4 = ( 2 · 2 ) |
111 |
110
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 = ( 2 · 2 ) ) |
112 |
111
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( ( 2 · 2 ) · 𝐾 ) ) |
113 |
23 23 24
|
mulassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 2 ) · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
114 |
112 113
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
115 |
114
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) = ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) ) |
116 |
|
2txmxeqx |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
117 |
107 116
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
118 |
115 117
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
119 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
120 |
119
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 − 1 ) = 2 ) |
121 |
118 120
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) + ( 3 − 1 ) ) = ( ( 2 · 𝐾 ) + 2 ) ) |
122 |
106 108 121
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 7 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 7 ) / 4 ) ) ) = ( ( 2 · 𝐾 ) + 2 ) ) |
123 |
6 122
|
sylan9eqr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑃 = ( ( 8 · 𝐾 ) + 7 ) ) → 𝑁 = ( ( 2 · 𝐾 ) + 2 ) ) |