| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgs2 |
⊢ ( 2 /L 2 ) = 0 |
| 2 |
1
|
eqeq1i |
⊢ ( ( 2 /L 2 ) = 1 ↔ 0 = 1 ) |
| 3 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 4 |
3
|
neii |
⊢ ¬ 0 = 1 |
| 5 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 6 |
5
|
nesymi |
⊢ ¬ 2 = 1 |
| 7 |
|
2re |
⊢ 2 ∈ ℝ |
| 8 |
|
2lt7 |
⊢ 2 < 7 |
| 9 |
7 8
|
ltneii |
⊢ 2 ≠ 7 |
| 10 |
9
|
neii |
⊢ ¬ 2 = 7 |
| 11 |
6 10
|
pm3.2ni |
⊢ ¬ ( 2 = 1 ∨ 2 = 7 ) |
| 12 |
4 11
|
2false |
⊢ ( 0 = 1 ↔ ( 2 = 1 ∨ 2 = 7 ) ) |
| 13 |
|
8nn |
⊢ 8 ∈ ℕ |
| 14 |
|
nnrp |
⊢ ( 8 ∈ ℕ → 8 ∈ ℝ+ ) |
| 15 |
13 14
|
ax-mp |
⊢ 8 ∈ ℝ+ |
| 16 |
|
0le2 |
⊢ 0 ≤ 2 |
| 17 |
|
2lt8 |
⊢ 2 < 8 |
| 18 |
|
modid |
⊢ ( ( ( 2 ∈ ℝ ∧ 8 ∈ ℝ+ ) ∧ ( 0 ≤ 2 ∧ 2 < 8 ) ) → ( 2 mod 8 ) = 2 ) |
| 19 |
7 15 16 17 18
|
mp4an |
⊢ ( 2 mod 8 ) = 2 |
| 20 |
19
|
eleq1i |
⊢ ( ( 2 mod 8 ) ∈ { 1 , 7 } ↔ 2 ∈ { 1 , 7 } ) |
| 21 |
|
2ex |
⊢ 2 ∈ V |
| 22 |
21
|
elpr |
⊢ ( 2 ∈ { 1 , 7 } ↔ ( 2 = 1 ∨ 2 = 7 ) ) |
| 23 |
20 22
|
bitr2i |
⊢ ( ( 2 = 1 ∨ 2 = 7 ) ↔ ( 2 mod 8 ) ∈ { 1 , 7 } ) |
| 24 |
2 12 23
|
3bitri |
⊢ ( ( 2 /L 2 ) = 1 ↔ ( 2 mod 8 ) ∈ { 1 , 7 } ) |