| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 2 |
|
2lgs |
⊢ ( 𝑃 ∈ ℙ → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 4 |
|
simpl |
⊢ ( ( ( 2 /L 𝑃 ) = 1 ∧ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) → ( 2 /L 𝑃 ) = 1 ) |
| 5 |
|
eqcom |
⊢ ( 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ↔ ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = 1 ) |
| 6 |
5
|
a1i |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ↔ ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = 1 ) ) |
| 7 |
|
nnoddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) |
| 8 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
| 9 |
8
|
anim1i |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) ) |
| 11 |
|
sqoddm1div8z |
⊢ ( ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) → ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ) |
| 13 |
|
m1exp1 |
⊢ ( ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ → ( ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = 1 ↔ 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = 1 ↔ 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 15 |
|
2lgsoddprmlem4 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) → ( 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 16 |
10 15
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 17 |
6 14 16
|
3bitrd |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 18 |
17
|
biimparc |
⊢ ( ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 2 /L 𝑃 ) = 1 ∧ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) → 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 20 |
4 19
|
eqtrd |
⊢ ( ( ( 2 /L 𝑃 ) = 1 ∧ ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 21 |
20
|
exp32 |
⊢ ( ( 2 /L 𝑃 ) = 1 → ( ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) |
| 22 |
|
2z |
⊢ 2 ∈ ℤ |
| 23 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 24 |
1 23
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ ) |
| 25 |
|
lgscl1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 2 /L 𝑃 ) ∈ { - 1 , 0 , 1 } ) |
| 26 |
22 24 25
|
sylancr |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) ∈ { - 1 , 0 , 1 } ) |
| 27 |
|
ovex |
⊢ ( 2 /L 𝑃 ) ∈ V |
| 28 |
27
|
eltp |
⊢ ( ( 2 /L 𝑃 ) ∈ { - 1 , 0 , 1 } ↔ ( ( 2 /L 𝑃 ) = - 1 ∨ ( 2 /L 𝑃 ) = 0 ∨ ( 2 /L 𝑃 ) = 1 ) ) |
| 29 |
|
simpl |
⊢ ( ( ( 2 /L 𝑃 ) = - 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) → ( 2 /L 𝑃 ) = - 1 ) |
| 30 |
16
|
notbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ↔ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) |
| 31 |
30
|
biimpar |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) → ¬ 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) |
| 32 |
|
m1expo |
⊢ ( ( ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ∈ ℤ ∧ ¬ 2 ∥ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) → ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = - 1 ) |
| 33 |
12 31 32
|
syl2an2r |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) → ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) = - 1 ) |
| 34 |
33
|
eqcomd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) → - 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( 2 /L 𝑃 ) = - 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) → - 1 = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 36 |
29 35
|
eqtrd |
⊢ ( ( ( 2 /L 𝑃 ) = - 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |
| 37 |
36
|
a1d |
⊢ ( ( ( 2 /L 𝑃 ) = - 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) ) → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) |
| 38 |
37
|
exp32 |
⊢ ( ( 2 /L 𝑃 ) = - 1 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 39 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 𝑃 ≠ 2 ) |
| 41 |
40
|
necomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 ≠ 𝑃 ) |
| 42 |
39 41
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 ≠ 𝑃 ) |
| 43 |
|
2prm |
⊢ 2 ∈ ℙ |
| 44 |
|
prmrp |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 45 |
43 1 44
|
sylancr |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 2 gcd 𝑃 ) = 1 ↔ 2 ≠ 𝑃 ) ) |
| 46 |
42 45
|
mpbird |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 gcd 𝑃 ) = 1 ) |
| 47 |
|
lgsne0 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( ( 2 /L 𝑃 ) ≠ 0 ↔ ( 2 gcd 𝑃 ) = 1 ) ) |
| 48 |
22 24 47
|
sylancr |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 2 /L 𝑃 ) ≠ 0 ↔ ( 2 gcd 𝑃 ) = 1 ) ) |
| 49 |
46 48
|
mpbird |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) ≠ 0 ) |
| 50 |
|
eqneqall |
⊢ ( ( 2 /L 𝑃 ) = 0 → ( ( 2 /L 𝑃 ) ≠ 0 → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 51 |
49 50
|
syl5 |
⊢ ( ( 2 /L 𝑃 ) = 0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 52 |
|
pm2.24 |
⊢ ( ( 2 /L 𝑃 ) = 1 → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) |
| 53 |
52
|
2a1d |
⊢ ( ( 2 /L 𝑃 ) = 1 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 54 |
38 51 53
|
3jaoi |
⊢ ( ( ( 2 /L 𝑃 ) = - 1 ∨ ( 2 /L 𝑃 ) = 0 ∨ ( 2 /L 𝑃 ) = 1 ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 55 |
28 54
|
sylbi |
⊢ ( ( 2 /L 𝑃 ) ∈ { - 1 , 0 , 1 } → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) ) |
| 56 |
26 55
|
mpcom |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( ¬ ( 2 /L 𝑃 ) = 1 → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) |
| 57 |
56
|
com13 |
⊢ ( ¬ ( 2 /L 𝑃 ) = 1 → ( ¬ ( 𝑃 mod 8 ) ∈ { 1 , 7 } → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) ) |
| 58 |
21 57
|
bija |
⊢ ( ( ( 2 /L 𝑃 ) = 1 ↔ ( 𝑃 mod 8 ) ∈ { 1 , 7 } ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) ) |
| 59 |
3 58
|
mpcom |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 2 /L 𝑃 ) = ( - 1 ↑ ( ( ( 𝑃 ↑ 2 ) − 1 ) / 8 ) ) ) |