| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lgsdir2lem3 | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eleq1 | 
							⊢ ( ( 𝑁  mod  8 )  =  𝑅  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqcoms | 
							⊢ ( 𝑅  =  ( 𝑁  mod  8 )  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  ↔  ( 𝑅  ∈  { 1 ,  7 }  ∨  𝑅  ∈  { 3 ,  5 } ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elpri | 
							⊢ ( 𝑅  ∈  { 3 ,  5 }  →  ( 𝑅  =  3  ∨  𝑅  =  5 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑅  =  3  →  ( 𝑅 ↑ 2 )  =  ( 3 ↑ 2 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  3  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 3 ↑ 2 )  −  1 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  3  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 3 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							2lgsoddprmlem3b | 
							⊢ ( ( ( 3 ↑ 2 )  −  1 )  /  8 )  =  1  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtrdi | 
							⊢ ( 𝑅  =  3  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  1 )  | 
						
						
							| 11 | 
							
								10
							 | 
							breq2d | 
							⊢ ( 𝑅  =  3  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							n2dvds1 | 
							⊢ ¬  2  ∥  1  | 
						
						
							| 13 | 
							
								12
							 | 
							pm2.21i | 
							⊢ ( 2  ∥  1  →  𝑅  ∈  { 1 ,  7 } )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							biimtrdi | 
							⊢ ( 𝑅  =  3  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑅  =  5  →  ( 𝑅 ↑ 2 )  =  ( 5 ↑ 2 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  5  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 5 ↑ 2 )  −  1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  5  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 5 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							breq2d | 
							⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  ( ( ( 5 ↑ 2 )  −  1 )  /  8 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							2lgsoddprmlem3c | 
							⊢ ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  =  3  | 
						
						
							| 20 | 
							
								19
							 | 
							breq2i | 
							⊢ ( 2  ∥  ( ( ( 5 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  3 )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							bitrdi | 
							⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  2  ∥  3 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							n2dvds3 | 
							⊢ ¬  2  ∥  3  | 
						
						
							| 23 | 
							
								22
							 | 
							pm2.21i | 
							⊢ ( 2  ∥  3  →  𝑅  ∈  { 1 ,  7 } )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							biimtrdi | 
							⊢ ( 𝑅  =  5  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 25 | 
							
								14 24
							 | 
							jaoi | 
							⊢ ( ( 𝑅  =  3  ∨  𝑅  =  5 )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 26 | 
							
								5 25
							 | 
							syl | 
							⊢ ( 𝑅  ∈  { 3 ,  5 }  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							jao1i | 
							⊢ ( ( 𝑅  ∈  { 1 ,  7 }  ∨  𝑅  ∈  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 28 | 
							
								4 27
							 | 
							sylbi | 
							⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  →  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 29 | 
							
								
							 | 
							elpri | 
							⊢ ( 𝑅  ∈  { 1 ,  7 }  →  ( 𝑅  =  1  ∨  𝑅  =  7 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							z0even | 
							⊢ 2  ∥  0  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑅  =  1  →  ( 𝑅 ↑ 2 )  =  ( 1 ↑ 2 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  1  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 1 ↑ 2 )  −  1 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  1  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 1 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							2lgsoddprmlem3a | 
							⊢ ( ( ( 1 ↑ 2 )  −  1 )  /  8 )  =  0  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							⊢ ( 𝑅  =  1  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  0 )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							breqtrrid | 
							⊢ ( 𝑅  =  1  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 38 | 
							
								
							 | 
							3z | 
							⊢ 3  ∈  ℤ  | 
						
						
							| 39 | 
							
								
							 | 
							dvdsmul1 | 
							⊢ ( ( 2  ∈  ℤ  ∧  3  ∈  ℤ )  →  2  ∥  ( 2  ·  3 ) )  | 
						
						
							| 40 | 
							
								37 38 39
							 | 
							mp2an | 
							⊢ 2  ∥  ( 2  ·  3 )  | 
						
						
							| 41 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑅  =  7  →  ( 𝑅 ↑ 2 )  =  ( 7 ↑ 2 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  7  →  ( ( 𝑅 ↑ 2 )  −  1 )  =  ( ( 7 ↑ 2 )  −  1 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							⊢ ( 𝑅  =  7  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( ( ( 7 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							2lgsoddprmlem3d | 
							⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqtrdi | 
							⊢ ( 𝑅  =  7  →  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 ) )  | 
						
						
							| 46 | 
							
								40 45
							 | 
							breqtrrid | 
							⊢ ( 𝑅  =  7  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 47 | 
							
								36 46
							 | 
							jaoi | 
							⊢ ( ( 𝑅  =  1  ∨  𝑅  =  7 )  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 48 | 
							
								29 47
							 | 
							syl | 
							⊢ ( 𝑅  ∈  { 1 ,  7 }  →  2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 ) )  | 
						
						
							| 49 | 
							
								28 48
							 | 
							impbid1 | 
							⊢ ( 𝑅  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) )  | 
						
						
							| 50 | 
							
								3 49
							 | 
							biimtrdi | 
							⊢ ( 𝑅  =  ( 𝑁  mod  8 )  →  ( ( 𝑁  mod  8 )  ∈  ( { 1 ,  7 }  ∪  { 3 ,  5 } )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) )  | 
						
						
							| 51 | 
							
								1 50
							 | 
							syl5com | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑅  =  ( 𝑁  mod  8 )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							3impia | 
							⊢ ( ( 𝑁  ∈  ℤ  ∧  ¬  2  ∥  𝑁  ∧  𝑅  =  ( 𝑁  mod  8 ) )  →  ( 2  ∥  ( ( ( 𝑅 ↑ 2 )  −  1 )  /  8 )  ↔  𝑅  ∈  { 1 ,  7 } ) )  |