Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3a | ⊢ ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
2 | 1 | oveq1i | ⊢ ( ( 1 ↑ 2 ) − 1 ) = ( 1 − 1 ) |
3 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
4 | 2 3 | eqtri | ⊢ ( ( 1 ↑ 2 ) − 1 ) = 0 |
5 | 4 | oveq1i | ⊢ ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = ( 0 / 8 ) |
6 | 8cn | ⊢ 8 ∈ ℂ | |
7 | 0re | ⊢ 0 ∈ ℝ | |
8 | 8pos | ⊢ 0 < 8 | |
9 | 7 8 | gtneii | ⊢ 8 ≠ 0 |
10 | 6 9 | div0i | ⊢ ( 0 / 8 ) = 0 |
11 | 5 10 | eqtri | ⊢ ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = 0 |