Metamath Proof Explorer


Theorem 2lgsoddprmlem3a

Description: Lemma 1 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)

Ref Expression
Assertion 2lgsoddprmlem3a ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = 0

Proof

Step Hyp Ref Expression
1 sq1 ( 1 ↑ 2 ) = 1
2 1 oveq1i ( ( 1 ↑ 2 ) − 1 ) = ( 1 − 1 )
3 1m1e0 ( 1 − 1 ) = 0
4 2 3 eqtri ( ( 1 ↑ 2 ) − 1 ) = 0
5 4 oveq1i ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = ( 0 / 8 )
6 8cn 8 ∈ ℂ
7 0re 0 ∈ ℝ
8 8pos 0 < 8
9 7 8 gtneii 8 ≠ 0
10 6 9 div0i ( 0 / 8 ) = 0
11 5 10 eqtri ( ( ( 1 ↑ 2 ) − 1 ) / 8 ) = 0