Description: Lemma 2 for 2lgsoddprmlem3 . (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgsoddprmlem3b | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
2 | 1 | oveq1i | ⊢ ( ( 3 ↑ 2 ) − 1 ) = ( 9 − 1 ) |
3 | 9m1e8 | ⊢ ( 9 − 1 ) = 8 | |
4 | 2 3 | eqtri | ⊢ ( ( 3 ↑ 2 ) − 1 ) = 8 |
5 | 4 | oveq1i | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = ( 8 / 8 ) |
6 | 8cn | ⊢ 8 ∈ ℂ | |
7 | 0re | ⊢ 0 ∈ ℝ | |
8 | 8pos | ⊢ 0 < 8 | |
9 | 7 8 | gtneii | ⊢ 8 ≠ 0 |
10 | 6 9 | dividi | ⊢ ( 8 / 8 ) = 1 |
11 | 5 10 | eqtri | ⊢ ( ( ( 3 ↑ 2 ) − 1 ) / 8 ) = 1 |