Step |
Hyp |
Ref |
Expression |
1 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
2 |
1
|
oveq1i |
⊢ ( 5 ↑ 2 ) = ( ( 4 + 1 ) ↑ 2 ) |
3 |
|
4cn |
⊢ 4 ∈ ℂ |
4 |
|
binom21 |
⊢ ( 4 ∈ ℂ → ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) ) |
5 |
3 4
|
ax-mp |
⊢ ( ( 4 + 1 ) ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) |
6 |
2 5
|
eqtri |
⊢ ( 5 ↑ 2 ) = ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) |
7 |
6
|
oveq1i |
⊢ ( ( 5 ↑ 2 ) − 1 ) = ( ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) − 1 ) |
8 |
|
3cn |
⊢ 3 ∈ ℂ |
9 |
|
8cn |
⊢ 8 ∈ ℂ |
10 |
8 9
|
mulcli |
⊢ ( 3 · 8 ) ∈ ℂ |
11 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
12 |
|
sq4e2t8 |
⊢ ( 4 ↑ 2 ) = ( 2 · 8 ) |
13 |
|
2cn |
⊢ 2 ∈ ℂ |
14 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
15 |
9
|
mulid2i |
⊢ ( 1 · 8 ) = 8 |
16 |
14 15
|
eqtr4i |
⊢ ( 4 · 2 ) = ( 1 · 8 ) |
17 |
3 13 16
|
mulcomli |
⊢ ( 2 · 4 ) = ( 1 · 8 ) |
18 |
12 17
|
oveq12i |
⊢ ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ( ( 2 · 8 ) + ( 1 · 8 ) ) |
19 |
13 11 9
|
adddiri |
⊢ ( ( 2 + 1 ) · 8 ) = ( ( 2 · 8 ) + ( 1 · 8 ) ) |
20 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
21 |
20
|
oveq1i |
⊢ ( ( 2 + 1 ) · 8 ) = ( 3 · 8 ) |
22 |
18 19 21
|
3eqtr2i |
⊢ ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) = ( 3 · 8 ) |
23 |
22
|
oveq1i |
⊢ ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) = ( ( 3 · 8 ) + 1 ) |
24 |
10 11 23
|
mvrraddi |
⊢ ( ( ( ( 4 ↑ 2 ) + ( 2 · 4 ) ) + 1 ) − 1 ) = ( 3 · 8 ) |
25 |
7 24
|
eqtri |
⊢ ( ( 5 ↑ 2 ) − 1 ) = ( 3 · 8 ) |
26 |
25
|
oveq1i |
⊢ ( ( ( 5 ↑ 2 ) − 1 ) / 8 ) = ( ( 3 · 8 ) / 8 ) |
27 |
|
0re |
⊢ 0 ∈ ℝ |
28 |
|
8pos |
⊢ 0 < 8 |
29 |
27 28
|
gtneii |
⊢ 8 ≠ 0 |
30 |
8 9 29
|
divcan4i |
⊢ ( ( 3 · 8 ) / 8 ) = 3 |
31 |
26 30
|
eqtri |
⊢ ( ( ( 5 ↑ 2 ) − 1 ) / 8 ) = 3 |