| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							6cn | 
							⊢ 6  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							8cn | 
							⊢ 8  ∈  ℂ  | 
						
						
							| 3 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 4 | 
							
								
							 | 
							8pos | 
							⊢ 0  <  8  | 
						
						
							| 5 | 
							
								3 4
							 | 
							gtneii | 
							⊢ 8  ≠  0  | 
						
						
							| 6 | 
							
								1 2 5
							 | 
							divcan4i | 
							⊢ ( ( 6  ·  8 )  /  8 )  =  6  | 
						
						
							| 7 | 
							
								1 2
							 | 
							mulcli | 
							⊢ ( 6  ·  8 )  ∈  ℂ  | 
						
						
							| 8 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 9 | 
							
								
							 | 
							4p3e7 | 
							⊢ ( 4  +  3 )  =  7  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcomi | 
							⊢ 7  =  ( 4  +  3 )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq1i | 
							⊢ ( 7 ↑ 2 )  =  ( ( 4  +  3 ) ↑ 2 )  | 
						
						
							| 12 | 
							
								
							 | 
							4cn | 
							⊢ 4  ∈  ℂ  | 
						
						
							| 13 | 
							
								
							 | 
							3cn | 
							⊢ 3  ∈  ℂ  | 
						
						
							| 14 | 
							
								12 13
							 | 
							binom2i | 
							⊢ ( ( 4  +  3 ) ↑ 2 )  =  ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							sq4e2t8 | 
							⊢ ( 4 ↑ 2 )  =  ( 2  ·  8 )  | 
						
						
							| 16 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 17 | 
							
								
							 | 
							4t2e8 | 
							⊢ ( 4  ·  2 )  =  8  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							mulcomli | 
							⊢ ( 2  ·  4 )  =  8  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1i | 
							⊢ ( ( 2  ·  4 )  ·  3 )  =  ( 8  ·  3 )  | 
						
						
							| 20 | 
							
								16 12 13
							 | 
							mulassi | 
							⊢ ( ( 2  ·  4 )  ·  3 )  =  ( 2  ·  ( 4  ·  3 ) )  | 
						
						
							| 21 | 
							
								2 13
							 | 
							mulcomi | 
							⊢ ( 8  ·  3 )  =  ( 3  ·  8 )  | 
						
						
							| 22 | 
							
								19 20 21
							 | 
							3eqtr3i | 
							⊢ ( 2  ·  ( 4  ·  3 ) )  =  ( 3  ·  8 )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							oveq12i | 
							⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  =  ( ( 2  ·  8 )  +  ( 3  ·  8 ) )  | 
						
						
							| 24 | 
							
								16 13 2
							 | 
							adddiri | 
							⊢ ( ( 2  +  3 )  ·  8 )  =  ( ( 2  ·  8 )  +  ( 3  ·  8 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							3p2e5 | 
							⊢ ( 3  +  2 )  =  5  | 
						
						
							| 26 | 
							
								13 16 25
							 | 
							addcomli | 
							⊢ ( 2  +  3 )  =  5  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq1i | 
							⊢ ( ( 2  +  3 )  ·  8 )  =  ( 5  ·  8 )  | 
						
						
							| 28 | 
							
								23 24 27
							 | 
							3eqtr2i | 
							⊢ ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  =  ( 5  ·  8 )  | 
						
						
							| 29 | 
							
								
							 | 
							sq3 | 
							⊢ ( 3 ↑ 2 )  =  9  | 
						
						
							| 30 | 
							
								
							 | 
							df-9 | 
							⊢ 9  =  ( 8  +  1 )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							eqtri | 
							⊢ ( 3 ↑ 2 )  =  ( 8  +  1 )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							oveq12i | 
							⊢ ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) )  =  ( ( 5  ·  8 )  +  ( 8  +  1 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							5cn | 
							⊢ 5  ∈  ℂ  | 
						
						
							| 34 | 
							
								33 2
							 | 
							mulcli | 
							⊢ ( 5  ·  8 )  ∈  ℂ  | 
						
						
							| 35 | 
							
								34 2 8
							 | 
							addassi | 
							⊢ ( ( ( 5  ·  8 )  +  8 )  +  1 )  =  ( ( 5  ·  8 )  +  ( 8  +  1 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							df-6 | 
							⊢ 6  =  ( 5  +  1 )  | 
						
						
							| 37 | 
							
								36
							 | 
							oveq1i | 
							⊢ ( 6  ·  8 )  =  ( ( 5  +  1 )  ·  8 )  | 
						
						
							| 38 | 
							
								33
							 | 
							a1i | 
							⊢ ( 8  ∈  ℂ  →  5  ∈  ℂ )  | 
						
						
							| 39 | 
							
								
							 | 
							id | 
							⊢ ( 8  ∈  ℂ  →  8  ∈  ℂ )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							adddirp1d | 
							⊢ ( 8  ∈  ℂ  →  ( ( 5  +  1 )  ·  8 )  =  ( ( 5  ·  8 )  +  8 ) )  | 
						
						
							| 41 | 
							
								2 40
							 | 
							ax-mp | 
							⊢ ( ( 5  +  1 )  ·  8 )  =  ( ( 5  ·  8 )  +  8 )  | 
						
						
							| 42 | 
							
								37 41
							 | 
							eqtri | 
							⊢ ( 6  ·  8 )  =  ( ( 5  ·  8 )  +  8 )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomi | 
							⊢ ( ( 5  ·  8 )  +  8 )  =  ( 6  ·  8 )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq1i | 
							⊢ ( ( ( 5  ·  8 )  +  8 )  +  1 )  =  ( ( 6  ·  8 )  +  1 )  | 
						
						
							| 45 | 
							
								32 35 44
							 | 
							3eqtr2i | 
							⊢ ( ( ( 4 ↑ 2 )  +  ( 2  ·  ( 4  ·  3 ) ) )  +  ( 3 ↑ 2 ) )  =  ( ( 6  ·  8 )  +  1 )  | 
						
						
							| 46 | 
							
								14 45
							 | 
							eqtri | 
							⊢ ( ( 4  +  3 ) ↑ 2 )  =  ( ( 6  ·  8 )  +  1 )  | 
						
						
							| 47 | 
							
								11 46
							 | 
							eqtri | 
							⊢ ( 7 ↑ 2 )  =  ( ( 6  ·  8 )  +  1 )  | 
						
						
							| 48 | 
							
								7 8 47
							 | 
							mvrraddi | 
							⊢ ( ( 7 ↑ 2 )  −  1 )  =  ( 6  ·  8 )  | 
						
						
							| 49 | 
							
								48
							 | 
							oveq1i | 
							⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( ( 6  ·  8 )  /  8 )  | 
						
						
							| 50 | 
							
								
							 | 
							3t2e6 | 
							⊢ ( 3  ·  2 )  =  6  | 
						
						
							| 51 | 
							
								13 16 50
							 | 
							mulcomli | 
							⊢ ( 2  ·  3 )  =  6  | 
						
						
							| 52 | 
							
								6 49 51
							 | 
							3eqtr4i | 
							⊢ ( ( ( 7 ↑ 2 )  −  1 )  /  8 )  =  ( 2  ·  3 )  |