| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2llnm3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
2llnm3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
2llnm3.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
2llnm3.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 5 |
|
2llnm3.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
| 6 |
|
oveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑌 ) ) |
| 7 |
6
|
neeq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑋 ∧ 𝑌 ) ≠ 0 ↔ ( 𝑌 ∧ 𝑌 ) ≠ 0 ) ) |
| 8 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → 𝐾 ∈ HL ) |
| 9 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → 𝐾 ∈ AtLat ) |
| 11 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ) |
| 12 |
|
simpl3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≤ 𝑊 ) |
| 13 |
|
simpl3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ≤ 𝑊 ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 15 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
| 16 |
1 2 15 4 5
|
2llnm2N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 17 |
8 11 12 13 14 16
|
syl113anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Atoms ‘ 𝐾 ) ) |
| 18 |
3 15
|
atn0 |
⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ∧ 𝑌 ) ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑋 ∧ 𝑌 ) ≠ 0 ) |
| 19 |
10 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ≠ 0 ) |
| 20 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
| 22 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ 𝑁 ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 24 |
23 4
|
llnbase |
⊢ ( 𝑌 ∈ 𝑁 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
22 24
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
23 2
|
latmidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ∧ 𝑌 ) = 𝑌 ) |
| 27 |
21 25 26
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑌 ∧ 𝑌 ) = 𝑌 ) |
| 28 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 29 |
3 4
|
llnn0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ) → 𝑌 ≠ 0 ) |
| 30 |
28 22 29
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → 𝑌 ≠ 0 ) |
| 31 |
27 30
|
eqnetrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑌 ∧ 𝑌 ) ≠ 0 ) |
| 32 |
7 19 31
|
pm2.61ne |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃 ) ∧ ( 𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑌 ) ≠ 0 ) |