| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2llnm4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
2llnm4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
2llnm4.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
2llnm4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
2llnm4.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 6 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝐾 ∈ AtLat ) |
| 8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝐾 ∈ Lat ) |
| 10 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑋 ∈ 𝑁 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 12 |
11 5
|
llnbase |
⊢ ( 𝑋 ∈ 𝑁 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑌 ∈ 𝑁 ) |
| 15 |
11 5
|
llnbase |
⊢ ( 𝑌 ∈ 𝑁 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
11 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
9 13 16 17
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑃 ∈ 𝐴 ) |
| 20 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) |
| 21 |
11 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
19 21
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
11 1 2
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ↔ 𝑃 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 24 |
9 22 13 16 23
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → ( ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ↔ 𝑃 ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 25 |
20 24
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → 𝑃 ≤ ( 𝑋 ∧ 𝑌 ) ) |
| 26 |
11 1 3 4
|
atlen0 |
⊢ ( ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑃 ≤ ( 𝑋 ∧ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ≠ 0 ) |
| 27 |
7 18 19 25 26
|
syl31anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ) ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ≠ 0 ) |